PriorBox.cpp 5.5 KB
Newer Older
G
gaoyuan 已提交
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Y
yuan 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "Layer.h"
#include "paddle/math/BaseMatrix.h"
G
gaoyuan 已提交
17
#include "paddle/math/Matrix.h"
Y
yuan 已提交
18 19

namespace paddle {
G
gaoyuan 已提交
20 21 22 23 24 25 26 27 28
/**
 * @brief A layer for generate prior box locations and variances.
 * - Input: Two and only two input layer are accepted. The input layer must be
 *        be a data output layer and a convolution output layer.
 * - Output: The prior box locations and variances of the input data.
 * Reference:
 *    Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
 *    Cheng-Yang Fu, Alexander C. Berg. SSD: Single Shot MultiBox Detector
 */
Y
yuan 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

class PriorBoxLayer : public Layer {
public:
  explicit PriorBoxLayer(const LayerConfig& config) : Layer(config) {}
  bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
  void forward(PassType passType);
  void backward(const UpdateCallback& callback) {}
  int numPriors_;
  std::vector<int> minSize_;
  std::vector<int> maxSize_;
  std::vector<float> aspectRatio_;
  std::vector<float> variance_;
  MatrixPtr buffer_;
};

bool PriorBoxLayer::init(const LayerMap& layerMap,
G
gaoyuan 已提交
45
                         const ParameterMap& parameterMap) {
Y
yuan 已提交
46
  Layer::init(layerMap, parameterMap);
G
gaoyuan 已提交
47 48 49
  auto pbConf = config_.inputs(0).priorbox_conf();
  std::copy(pbConf.min_size().begin(),
            pbConf.min_size().end(),
Y
yuan 已提交
50
            std::back_inserter(minSize_));
G
gaoyuan 已提交
51 52
  std::copy(pbConf.max_size().begin(),
            pbConf.max_size().end(),
Y
yuan 已提交
53
            std::back_inserter(maxSize_));
G
gaoyuan 已提交
54 55
  std::copy(pbConf.aspect_ratio().begin(),
            pbConf.aspect_ratio().end(),
Y
yuan 已提交
56
            std::back_inserter(aspectRatio_));
G
gaoyuan 已提交
57 58
  std::copy(pbConf.variance().begin(),
            pbConf.variance().end(),
Y
yuan 已提交
59 60
            std::back_inserter(variance_));
  // flip
G
gaoyuan 已提交
61 62
  int inputRatioLength = aspectRatio_.size();
  for (int index = 0; index < inputRatioLength; index++)
G
gaoyuan 已提交
63
    aspectRatio_.push_back(1 / aspectRatio_[index]);
Y
yuan 已提交
64 65
  aspectRatio_.push_back(1.);
  numPriors_ = aspectRatio_.size();
G
gaoyuan 已提交
66
  if (maxSize_.size() > 0) numPriors_++;
Y
yuan 已提交
67 68 69 70 71
  return true;
}

void PriorBoxLayer::forward(PassType passType) {
  Layer::forward(passType);
G
gaoyuan 已提交
72 73 74
  auto input = getInput(0);
  int layerWidth = input.getFrameWidth();
  int layerHeight = input.getFrameHeight();
Y
yuan 已提交
75

G
gaoyuan 已提交
76 77 78
  auto image = getInput(1);
  int imageWidth = image.getFrameWidth();
  int imageHeight = image.getFrameHeight();
G
gaoyuan 已提交
79

G
gaoyuan 已提交
80 81 82
  float stepW = static_cast<float>(imageWidth) / layerWidth;
  float stepH = static_cast<float>(imageHeight) / layerHeight;
  int dim = layerHeight * layerWidth * numPriors_ * 4;
Y
yuan 已提交
83 84 85
  reserveOutput(1, dim * 2);
  // use a cpu buffer to compute
  Matrix::resizeOrCreate(buffer_, 1, dim * 2, false, false);
G
gaoyuan 已提交
86
  auto* tmpPtr = buffer_->getData();
Y
yuan 已提交
87 88

  int idx = 0;
G
gaoyuan 已提交
89 90 91 92 93
  for (int h = 0; h < layerHeight; ++h) {
    for (int w = 0; w < layerWidth; ++w) {
      float centerX = (w + 0.5) * stepW;
      float centerY = (h + 0.5) * stepH;
      int minSize = 0;
Y
yuan 已提交
94 95
      for (size_t s = 0; s < minSize_.size(); s++) {
        // first prior.
G
gaoyuan 已提交
96 97 98
        minSize = minSize_[s];
        int boxWidth = minSize;
        int boxHeight = minSize;
Y
yuan 已提交
99
        // xmin, ymin, xmax, ymax.
G
gaoyuan 已提交
100 101 102 103
        tmpPtr[idx++] = (centerX - boxWidth / 2.) / imageWidth;
        tmpPtr[idx++] = (centerY - boxHeight / 2.) / imageHeight;
        tmpPtr[idx++] = (centerX + boxWidth / 2.) / imageWidth;
        tmpPtr[idx++] = (centerY + boxHeight / 2.) / imageHeight;
G
gaoyuan 已提交
104 105
        // set the variance.
        for (int t = 0; t < 4; t++) tmpPtr[idx++] = variance_[t];
Y
yuan 已提交
106 107 108 109 110

        if (maxSize_.size() > 0) {
          CHECK_EQ(minSize_.size(), maxSize_.size());
          // second prior.
          for (size_t s = 0; s < maxSize_.size(); s++) {
G
gaoyuan 已提交
111 112 113 114 115 116
            int maxSize = maxSize_[s];
            boxWidth = boxHeight = sqrt(minSize * maxSize);
            tmpPtr[idx++] = (centerX - boxWidth / 2.) / imageWidth;
            tmpPtr[idx++] = (centerY - boxHeight / 2.) / imageHeight;
            tmpPtr[idx++] = (centerX + boxWidth / 2.) / imageWidth;
            tmpPtr[idx++] = (centerY + boxHeight / 2.) / imageHeight;
G
gaoyuan 已提交
117 118
            // set the variance.
            for (int t = 0; t < 4; t++) tmpPtr[idx++] = variance_[t];
Y
yuan 已提交
119 120 121 122 123 124
          }
        }
      }
      // rest of priors.
      for (size_t r = 0; r < aspectRatio_.size(); r++) {
        float ar = aspectRatio_[r];
G
gaoyuan 已提交
125
        if (fabs(ar - 1.) < 1e-6) continue;
G
gaoyuan 已提交
126 127 128 129 130 131
        float boxWidth = minSize * sqrt(ar);
        float boxHeight = minSize / sqrt(ar);
        tmpPtr[idx++] = (centerX - boxWidth / 2.) / imageWidth;
        tmpPtr[idx++] = (centerY - boxHeight / 2.) / imageHeight;
        tmpPtr[idx++] = (centerX + boxWidth / 2.) / imageWidth;
        tmpPtr[idx++] = (centerY + boxHeight / 2.) / imageHeight;
G
gaoyuan 已提交
132 133
        // set the variance.
        for (int t = 0; t < 4; t++) tmpPtr[idx++] = variance_[t];
Y
yuan 已提交
134 135 136 137
      }
    }
  }
  // clip the prior's coordidate such that it is within [0, 1]
G
gaoyuan 已提交
138 139 140
  for (int d = 0; d < dim * 2; ++d)
    if ((d % 8) < 4)
      tmpPtr[d] = std::min(std::max(tmpPtr[d], (float)0.), (float)1.);
Y
yuan 已提交
141 142 143 144 145 146
  MatrixPtr outV = getOutputValue();
  outV->copyFrom(buffer_->data_, dim * 2);
}
REGISTER_LAYER(priorbox, PriorBoxLayer);

}  // namespace paddle