fp16_utils.py 17.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

from ... import core
from ... import layers
19 20 21 22
from ... import global_scope
from ...log_helper import get_logger
import logging
import numpy as np
23 24 25

__all__ = ["cast_model_to_fp16", "cast_parameters_to_fp16"]

26 27
_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')
28 29


J
Jie Fang 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
def _rename_arg(op, old_name, new_name):
    """
    If an op has old_name input and output, rename these input 
    args new_name.

    Args:
        op (Operator): Current operator.
        old_name (str): The old name of input args.
        new_name (str): The new name of input args.
    """
    op_desc = op.desc
    if isinstance(op_desc, tuple):
        op_desc = op_desc[0]
    op_desc._rename_input(old_name, new_name)
    op_desc._rename_output(old_name, new_name)


def _dtype_to_str(dtype):
    """
    Convert specific variable type to its corresponding string.

    Args:
        dtype (VarType): Variable type.
    """
    if dtype == core.VarDesc.VarType.FP16:
        return 'fp16'
    else:
        return 'fp32'


def _insert_cast_op(block, op, idx, src_dtype, dest_dtype):
    """
    Insert cast op and rename args of input and output.

    Args:
        block (Program): The block in which the operator is.
        op (Operator): The operator to insert cast op.
        idx (int): The index of current operator.
        src_dtype (VarType): The input variable dtype of cast op.
Z
Zhen Wang 已提交
69
        dest_dtype (VarType): The output variable dtype of cast op.
J
Jie Fang 已提交
70 71 72 73 74 75 76 77 78

    Returns:
        num_cast_op (int): The number of cast ops that have been inserted.
    """
    num_cast_ops = 0
    valid_types = [
        core.VarDesc.VarType.LOD_TENSOR, core.VarDesc.VarType.SELECTED_ROWS,
        core.VarDesc.VarType.LOD_TENSOR_ARRAY
    ]
79

J
Jie Fang 已提交
80
    for in_name in op.input_names:
Z
Zhang Ting 已提交
81
        if src_dtype == core.VarDesc.VarType.FP32 and op.type in [
82
                'batch_norm', 'fused_bn_add_activation', 'layer_norm'
Z
Zhang Ting 已提交
83 84
        ]:
            if in_name not in {'X', 'Z'}:
85
                continue
J
Jie Fang 已提交
86 87
        for in_var_name in op.input(in_name):
            in_var = block.var(in_var_name)
Z
Zhen Wang 已提交
88
            if in_var.type not in valid_types or in_var.dtype == dest_dtype:
J
Jie Fang 已提交
89 90
                continue
            if in_var.dtype == src_dtype:
91 92 93 94 95 96 97
                cast_name = in_var.name + '.cast_' + _dtype_to_str(dest_dtype)
                out_var = block.vars.get(cast_name)
                if out_var is None or out_var.dtype != dest_dtype:
                    out_var = block.create_var(
                        name=cast_name,
                        dtype=dest_dtype,
                        persistable=False,
Z
Zhen Wang 已提交
98
                        stop_gradient=in_var.stop_gradient)
99 100 101 102 103 104 105 106 107 108 109

                    block._insert_op(
                        idx,
                        type="cast",
                        inputs={"X": in_var},
                        outputs={"Out": out_var},
                        attrs={
                            "in_dtype": in_var.dtype,
                            "out_dtype": out_var.dtype
                        })
                    num_cast_ops += 1
J
Jie Fang 已提交
110 111 112 113
                _rename_arg(op, in_var.name, out_var.name)
            else:
                if op.has_attr('in_dtype'):
                    op._set_attr('in_dtype', dest_dtype)
Z
Zhen Wang 已提交
114
    if src_dtype == core.VarDesc.VarType.FP32 and dest_dtype == core.VarDesc.VarType.FP16:
J
Jie Fang 已提交
115
        for out_name in op.output_names:
116 117 118
            if op.type in [
                    'batch_norm', 'fused_bn_add_activation', 'layer_norm'
            ] and out_name != 'Y':
119
                continue
J
Jie Fang 已提交
120 121 122 123
            for out_var_name in op.output(out_name):
                out_var = block.var(out_var_name)
                if out_var.type not in valid_types:
                    continue
124 125
                if out_var.dtype == core.VarDesc.VarType.FP32:
                    out_var.desc.set_dtype(core.VarDesc.VarType.FP16)
J
Jie Fang 已提交
126
                    if op.has_attr('out_dtype'):
127
                        op._set_attr('out_dtype', core.VarDesc.VarType.FP16)
J
Jie Fang 已提交
128 129 130
    return num_cast_ops


131 132 133 134 135 136 137 138 139 140
def find_true_prev_op(ops, cur_op, var_name):
    """
    Find the true prev op that outputs var_name variable.

    Args:
        ops (list): A list of ops.
        cur_op (Operator): Current operator which has var_name variable.
        var_name (string): Variable name.
    """
    prev_op = []
J
Jie Fang 已提交
141
    for op in ops:
142 143
        if op == cur_op:
            break
J
Jie Fang 已提交
144 145 146
        for out_name in op.output_names:
            for out_var_name in op.output(out_name):
                if out_var_name == var_name:
147 148 149 150 151 152 153 154
                    prev_op.append(op)
    if prev_op:
        if not len(prev_op) == 1:
            raise ValueError("There must be only one previous op "
                             "that outputs {0} variable".format(var_name))
        else:
            return prev_op[0]
    return None
J
Jie Fang 已提交
155 156


M
mapingshuo 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
def find_true_post_op(ops, cur_op, var_name):
    """
    if there are post ops, return them, if there is no post op,
    return None instead.
    Args:
        ops (list): A list of ops.
        cur_op (Operator): Current operator which has var_name variable.
        var_name (string): Variable name.
    """
    post_op = []
    for idx, op in enumerate(ops):
        if op == cur_op:
            break

    for i in range(idx + 1, len(ops)):
        op = ops[i]
        for in_name in op.input_names:
            for in_var_name in op.input(in_name):
                if in_var_name == var_name:
                    post_op.append(op)
    if post_op != []:
        return post_op
    return None


def find_op_index(block_desc, cur_op_desc):
    """
    """
    for idx in range(block_desc.op_size()):
        if cur_op_desc == block_desc.op(idx):
            return idx
    return -1


191 192 193 194 195 196 197 198 199 200 201 202
def _is_in_black_varnames(op, amp_lists):
    for in_name in op.input_arg_names:
        if in_name in amp_lists.black_varnames:
            return True

    for out_name in op.output_arg_names:
        if out_name in amp_lists.black_varnames:
            return True

    return False


203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
def cast_model_to_fp16(main_program):
    """
    Traverse all ops in the whole model and set their inputs and outputs
    to the fp16 data type. This function will do some special process for
    the batch normalization, which keeps the computational process of
    batchnorms in FP32.
    Args:
        main_program (Program): The main program for training.
    """
    valid_types = [
        core.VarDesc.VarType.LOD_TENSOR, core.VarDesc.VarType.SELECTED_ROWS,
        core.VarDesc.VarType.LOD_TENSOR_ARRAY
    ]
    global_block = main_program.global_block()

    for block in main_program.blocks:
        ops = block.ops
        for op in ops:
            if op.type == 'create_py_reader' or op.type == 'read':
                continue
            for in_name in op.input_names:
                if op.type in {
                        'batch_norm', 'fused_bn_add_activation', 'layer_norm'
                } and in_name not in {'X', 'Z'}:
                    continue
                for in_var_name in op.input(in_name):
                    in_var = None
                    try:
                        in_var = block.var(in_var_name)
                    except ValueError as e:
                        _logger.debug(
                            "-- {}, try to get it in the global block. --".
                            format(e))
                        in_var = global_block.var(in_var_name)
                        if in_var is not None:
                            _logger.debug(
                                "-- var {} is got in the global block. --".
                                format(in_var_name))

                    if in_var is None or in_var.type not in valid_types:
                        continue

                    if in_var.dtype == core.VarDesc.VarType.FP32:
                        in_var.desc.set_dtype(core.VarDesc.VarType.FP16)

                    _logger.debug(
                        "-- op type: {}, in var name: {}, in var dtype: {} --".
                        format(op.type, in_var_name, in_var.dtype))

            for out_name in op.output_names:
                if op.type in {
                        'batch_norm', 'fused_bn_add_activation', 'layer_norm'
                } and out_name != 'Y':
                    continue
                for out_var_name in op.output(out_name):
                    out_var = None
                    try:
                        out_var = block.var(out_var_name)
                    except ValueError as e:
                        _logger.debug(
                            "-- {}, try to get it in the global block. --".
                            format(e))
                        out_var = global_block.var(out_var_name)
                        if out_var is not None:
                            _logger.debug(
                                "-- var {} is got in the global block. --".
                                format(out_var_name))

                    if out_var is None or out_var.type not in valid_types:
                        continue

                    if out_var.dtype == core.VarDesc.VarType.FP32:
                        out_var.desc.set_dtype(core.VarDesc.VarType.FP16)

                    _logger.debug(
                        "-- op type: {}, out var name: {}, out var dtype: {} --".
                        format(op.type, out_var_name, out_var.dtype))
            if op.has_attr('in_dtype') and op.attr(
                    'in_dtype') == core.VarDesc.VarType.FP32:
                op._set_attr('in_dtype', core.VarDesc.VarType.FP16)
            if op.has_attr('out_dtype') and op.attr(
                    'out_dtype') == core.VarDesc.VarType.FP32:
                op._set_attr('out_dtype', core.VarDesc.VarType.FP16)
            if op.has_attr('dtype') and op.attr(
                    'dtype') == core.VarDesc.VarType.FP32:
                op._set_attr('dtype', core.VarDesc.VarType.FP16)


def cast_parameters_to_fp16(place, main_program, scope=None):
    """
    Traverse all parameters in the whole model and set them to the fp16 data type.
    Whereas, this function will keep parameters of batchnorms in FP32.
    Args:
        place(fluid.CPUPlace|fluid.CUDAPlace): place is used to restore the weight tensors.
        main_program (Program): The main program for training.
        scope(fluid.Scope, optional): scope is used to get the weight tensor values.
        Default is None.
    """
    all_ops = []
    for block in main_program.blocks:
        all_ops.extend(block.ops)
    bn_params = set()
    for op in all_ops:
        if op.type not in {
                'batch_norm', 'fused_bn_add_activation', 'layer_norm'
        }:
            continue
        for in_name in op.input_names:
            if in_name not in {'X', 'Z'}:
                for in_var_name in op.input(in_name):
                    bn_params.add(in_var_name)
    global_block = main_program.global_block()
    all_parameters = global_block.all_parameters()
    var_scope = scope if scope is not None else global_scope()
    for param in all_parameters:
        if param.name not in bn_params:
            param_t = var_scope.find_var(param.name).get_tensor()
            data = np.array(param_t)
            param_t.set(np.float16(data), place)


J
Jie Fang 已提交
324
def rewrite_program(main_prog, amp_lists):
J
Jie Fang 已提交
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
    """
    Traverse all ops in current block and insert cast op according to 
    which set current op belongs to.

    1. When an op belongs to the black list, add it to black set
    2. When an op belongs to the white list, add it to white set
    3. When an op belongs to the gray list. If one 
       of its inputs is the output of black set op or black list op, 
       add it to black set. If all of its previous ops are not black 
       op and one of its inputs is the output of white set op or 
       white list op, add it to white set.
    4. When an op isn't in the lists, add it to black op set.
    5. Add necessary cast ops to make sure that black set op will be 
       computed in fp32 mode, while white set op will be computed in 
       fp16 mode.

    Args:
        main_prog (Program): The main program for training.
    """
    block = main_prog.global_block()
    ops = block.ops
    white_op_set = set()
    black_op_set = set()
348
    for op in ops:
349 350 351 352 353 354 355 356

        # NOTE(zhiqiu): 'create_py_reader' and 'read' is used in non-iterable DataLoder, 
        # we don't need to handle reader op and the input of 'create_py_reader' is not 
        # in block, which may result in errors.
        # See GeneratorLoader._init_non_iterable() for details.
        if op.type == 'create_py_reader' or op.type == 'read':
            continue

357 358 359 360 361
        if amp_lists.black_varnames is not None and _is_in_black_varnames(
                op, amp_lists):
            black_op_set.add(op)
            continue

J
Jie Fang 已提交
362
        if op.type in amp_lists.black_list:
J
Jie Fang 已提交
363
            black_op_set.add(op)
J
Jie Fang 已提交
364
        elif op.type in amp_lists.white_list:
J
Jie Fang 已提交
365
            white_op_set.add(op)
J
Jie Fang 已提交
366
        elif op.type in amp_lists.gray_list:
J
Jie Fang 已提交
367 368 369 370 371 372 373 374 375 376
            is_black_op = False
            is_white_op = False
            for in_name in op.input_names:
                # if this op has inputs
                if in_name:
                    for in_var_name in op.input(in_name):
                        in_var = block.var(in_var_name)
                        # this in_var isn't the output of other op
                        if in_var.op is None:
                            continue
377 378 379 380
                        elif in_var.op is op:
                            prev_op = find_true_prev_op(ops, op, in_var_name)
                            if prev_op is None:
                                continue
J
Jie Fang 已提交
381 382 383 384
                        else:
                            prev_op = in_var.op
                        # if it's one of inputs
                        if prev_op in black_op_set or \
J
Jie Fang 已提交
385
                                prev_op.type in amp_lists.black_list:
J
Jie Fang 已提交
386
                            is_black_op = True
387
                        elif prev_op in white_op_set or \
J
Jie Fang 已提交
388
                                prev_op.type in amp_lists.white_list:
J
Jie Fang 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
                            is_white_op = True
            if is_black_op:
                black_op_set.add(op)
            elif is_white_op:
                white_op_set.add(op)
            else:
                pass
        else:
            # For numerical safe, we apply fp32 computation on ops that
            # are not determined which list they should stay.
            black_op_set.add(op)

    idx = 0
    while idx < len(ops):
        op = ops[idx]
        num_cast_ops = 0
        if op in black_op_set:
            num_cast_ops = _insert_cast_op(block, op, idx,
                                           core.VarDesc.VarType.FP16,
                                           core.VarDesc.VarType.FP32)
        elif op in white_op_set:
            num_cast_ops = _insert_cast_op(block, op, idx,
                                           core.VarDesc.VarType.FP32,
                                           core.VarDesc.VarType.FP16)
        else:
            pass

        idx += num_cast_ops + 1


419 420 421
def update_role_var_grad(main_prog, params_grads):
    """
    Update op_role_var attr for some ops to make sure the gradients
Z
Zhen Wang 已提交
422
    transferred across GPUs is FP16.
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
    1. Check whether the op that outputs gradient is cast or not.
    2. If op is cast and gradient is FP32, remove the op_role_var
       and find the prev op which outputs FP16 gradient
    3. Update the op_role_var of the prev op.

    Args:
        main_prog (Program): The main program for training.
        params_grads (list): A list of params and grads.
    """
    block = main_prog.global_block()
    BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward
    OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
    for p, g in params_grads:
        op = g.op
        if g.dtype == core.VarDesc.VarType.FP32 and op.type == 'cast':
            role = op.attr('op_role')
            if role & int(BACKWARD) and op.has_attr('op_role_var'):
                op.desc.remove_attr("op_role_var")
            else:
                raise ValueError("The cast op {0} must be in BACKWARD role "
                                 "and have op_role_var attr.".format(op))

            fp16_grad_name = op.input(op.input_names[0])[0]
            op_for_fp16_grad = find_true_prev_op(block.ops, op, fp16_grad_name)
            op_role_var_attr_name = \
                core.op_proto_and_checker_maker.kOpRoleVarAttrName()
            attr_val = [p.name, fp16_grad_name]
            if op_for_fp16_grad.has_attr(op_role_var_attr_name):
                attr_val.extend(op_for_fp16_grad.attr(op_role_var_attr_name))
            op_for_fp16_grad._set_attr(op_role_var_attr_name, attr_val)

Z
Zhen Wang 已提交
454 455
            # Maximize the all_reduce overlap, and perform the cast
            # operation after gradients transfer.
456
            op._set_attr('op_role', OPTIMIZE)
M
mapingshuo 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
            # optimize op should stay behind forward and backward ops
            if op == block.ops[-1]:
                continue
            post_ops = find_true_post_op(block.ops, op, g.name)
            if post_ops is not None:
                raise ValueError("The cast op {0}'s output should not be"
                                 "used by a non-optimize op, however, it"
                                 "is used by {1}".format(op, post_ops[0]))
            new_op_desc = block.desc.append_op()
            new_op_desc.copy_from(op.desc)

            op_idx = find_op_index(block.desc, op.desc)
            if op_idx == -1:
                raise ValueError("The op {0} is not in program".format(op))
            block.desc._remove_op(op_idx, op_idx + 1)
        block._sync_with_cpp()