conv_op.cc 7.9 KB
Newer Older
C
chengduoZH 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

3 4 5
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
C
chengduoZH 已提交
6

7
   http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

9 10 11 12 13
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */
C
chengduoZH 已提交
14

C
chengduoZH 已提交
15
#include "paddle/operators/conv_op.h"
C
chengduoZH 已提交
16 17 18 19

namespace paddle {
namespace operators {

C
chengduoZH 已提交
20
void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
21
  PADDLE_ENFORCE(ctx->HasInput("Input"),
C
chengduoZH 已提交
22
                 "Input(Input) of ConvOp should not be null.");
C
chengduoZH 已提交
23
  PADDLE_ENFORCE(ctx->HasInput("Filter"),
C
chengduoZH 已提交
24
                 "Input(Filter) of ConvOp should not be null.");
C
chengduoZH 已提交
25
  PADDLE_ENFORCE(ctx->HasOutput("Output"),
C
chengduoZH 已提交
26
                 "Output(Output) of ConvOp should not be null.");
C
chengduoZH 已提交
27 28 29 30 31 32 33 34 35

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
  int groups = ctx->Attrs().Get<int>("groups");
  int input_channels = in_dims[1];
  int output_channels = filter_dims[0];

C
chengduoZH 已提交
36 37 38 39 40 41 42 43 44
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
      "Conv input dimension and filter dimension should be the same.");
  PADDLE_ENFORCE(
      in_dims.size() - strides.size() == 2U,
      "Conv input dimension and strides dimension should be consistent.");
  PADDLE_ENFORCE_EQ(
      paddings.size(), strides.size(),
      "Conv paddings dimension and Conv strides dimension should be the same.");
C
chengduoZH 已提交
45 46
  PADDLE_ENFORCE_EQ(input_channels, filter_dims[1] * groups,
                    "The number of input channels should be equal to filter "
C
chengduoZH 已提交
47
                    "channels * groups.");
C
chengduoZH 已提交
48 49 50 51 52 53
  PADDLE_ENFORCE_EQ(
      output_channels % groups, 0,
      "The number of output channels should be divided by groups.");

  std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
  for (size_t i = 0; i < paddings.size(); ++i) {
C
chengduoZH 已提交
54 55
    output_shape.push_back(OutputSize(in_dims[i + 2], filter_dims[i + 2],
                                      paddings[i], strides[i]));
C
chengduoZH 已提交
56
  }
57
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
C
chengduoZH 已提交
58 59
}

C
chengduoZH 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
Conv2DOpMaker::Conv2DOpMaker(framework::OpProto* proto,
                             framework::OpAttrChecker* op_checker)
    : OpProtoAndCheckerMaker(proto, op_checker) {
  AddInput(
      "Input",
      "The input tensor of convolution operator. "
      "The format of input tensor is NCHW. Where N is batch size, C is the "
      "number of channels, H and W is the height and width of image.");
  AddInput("Filter",
           "The filter tensor of convolution operator."
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
           "H and W is height and width of filter. "
           "If the groups attribute is greater than 1, C equal the number of "
           "input image channels divided by the groups.");
  AddOutput("Output",
            "The output tensor of convolution operator."
            "The format of output tensor is also NCHW.");
  AddAttr<std::vector<int>>("strides", "strides of convolution operator.")
      .SetDefault({1, 1});
  AddAttr<std::vector<int>>("paddings", "paddings of convolution operator.")
      .SetDefault({0, 0});
  AddAttr<int>(
      "groups",
      "group size of convolution operator. "
      "Refer to grouped convolution in Alex Krizhevsky's paper: "
      "when group=2, the first half of the filters are only connected to the "
      "first half of the input channels, and the second half only connected "
      "to the second half.")
      .SetDefault(1);
  AddComment(R"DOC(
The convolution operation calculates the output based on the input, filter
and strides, paddings, groups parameters. The size of each dimension of the
parameters is checked in the infer-shape.
)DOC");
C
chengduoZH 已提交
95 96 97 98 99 100 101
}

Conv3DOpMaker::Conv3DOpMaker(framework::OpProto* proto,
                             framework::OpAttrChecker* op_checker)
    : OpProtoAndCheckerMaker(proto, op_checker) {
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
102
      "(Tensor), the input tensor of convolution operator. "
C
chengduoZH 已提交
103 104 105 106
      "The format of input tensor is NCDHW. Where N is batch size, C is the "
      "number of channels, D, H and W is the depth, height and width of "
      "image.");
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
107
           "(Tensor), the filter tensor of convolution operator."
C
chengduoZH 已提交
108 109 110 111 112 113
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
           "D, H and W is depth, height and width of filter. "
           "If the groups attribute is greater than 1, C equal the number of "
           "input image channels divided by the groups.");
  AddOutput("Output",
C
fix doc  
chengduoZH 已提交
114
            "(Tensor), the output tensor of convolution operator."
C
chengduoZH 已提交
115
            "The format of output tensor is also NCDHW.");
C
fix doc  
chengduoZH 已提交
116 117 118
  AddAttr<std::vector<int>>(
      "strides",
      "(vector, default {0,0,0}), the strides of convolution operator.")
C
chengduoZH 已提交
119
      .SetDefault({1, 1, 1});
C
fix doc  
chengduoZH 已提交
120 121 122
  AddAttr<std::vector<int>>(
      "paddings",
      "(vector, default {0,0,0}), the paddings of convolution operator.")
C
chengduoZH 已提交
123 124 125
      .SetDefault({0, 0, 0});
  AddAttr<int>(
      "groups",
C
fix doc  
chengduoZH 已提交
126
      "(int, default 1) the group size of convolution operator. "
C
chengduoZH 已提交
127 128 129 130 131 132 133 134 135
      "Refer to grouped convolution in Alex Krizhevsky's paper: "
      "when group=2, the first half of the filters are only connected to the "
      "first half of the input channels, and the second half only connected "
      "to the second half.")
      .SetDefault(1);
  AddComment(R"DOC(
The convolution operation calculates the output based on the input, filter
and strides, paddings, groups parameters. The size of each dimension of the
parameters is checked in the infer-shape.
C
fix doc  
chengduoZH 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
Input(Input, Filter) and output(Output) are in NCDHW format. Where N is batch
size, C is the number of channels, D, H and W is the depth, height and
width of feature. Parameters(ksize, strides, paddings) are three elements.
These three elements represent depth, height and width, respectively.
The input(X) size and output(Out) size may be different.

Example:
  Input:
       Input shape: (N, C_in, D_in, H_in, W_in)
       Filter shape: (C_out, C_in, D_f, H_f, W_f)
  Output:
       Output shape: (N, C_out, D_out, H_out, W_out)
  where
       D_out = (D_in - filter_size[0] + 2 * paddings[0]) / strides[0] + 1;
       H_out = (H_in - filter_size[1] + 2 * paddings[1]) / strides[1] + 1;
       W_out = (W_in - filter_size[2] + 2 * paddings[2]) / strides[2] + 1;
C
chengduoZH 已提交
152 153 154
)DOC");
}

C
chengduoZH 已提交
155 156 157 158 159 160 161 162 163 164 165
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

C
chengduoZH 已提交
166 167 168 169
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
C
chengduoZH 已提交
170 171 172 173 174 175 176 177 178 179
REGISTER_OP(conv2d, ops::ConvOp, ops::Conv2DOpMaker, conv2d_grad,
            ops::ConvOpGrad);
namespace ops = paddle::operators;
REGISTER_OP(conv3d, ops::ConvOp, ops::Conv3DOpMaker, conv3d_grad,
            ops::ConvOpGrad);

REGISTER_OP_CPU_KERNEL(
    conv2d, ops::GemmConv2DKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
    conv2d_grad, ops::GemmConvGrad2DKernel<paddle::platform::CPUPlace, float>);
C
chengduoZH 已提交
180 181 182 183 184

REGISTER_OP_CPU_KERNEL(
    conv3d, ops::GemmConv3DKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
    conv3d_grad, ops::GemmConvGrad3DKernel<paddle::platform::CPUPlace, float>);