operator.h 10.6 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
Q
Qiao Longfei 已提交
18 19 20 21
#include <string>
#include <unordered_map>
#include <vector>

Y
Yi Wang 已提交
22
#include "paddle/framework/attribute.h"
Y
Yu Yang 已提交
23
#include "paddle/framework/framework.pb.h"
Q
qijun 已提交
24 25 26 27
#include "paddle/framework/scope.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/place.h"
Y
Yu Yang 已提交
28
#include "paddle/platform/variant.h"
Q
qijun 已提交
29
#include "paddle/utils/Error.h"
Q
Qiao Longfei 已提交
30 31 32 33

namespace paddle {
namespace framework {

34
/// If a variable is a empty variable, that name will be used.
35
constexpr char kEmptyVarName[] = "@EMPTY@";
36 37 38

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
39
constexpr char kTempVarName[] = "@TEMP@";
40 41 42 43

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
44
constexpr char kGradVarSuffix[] = "@GRAD";
45 46

/// Variables with this suffix are supposed to be filled up with zeros.
47
constexpr char kZeroVarSuffix[] = "@ZERO";
48 49 50 51 52

inline std::string GradVarName(const std::string& var_name) {
  return var_name + kGradVarSuffix;
}

Q
Qiao Longfei 已提交
53
class OperatorBase;
54 55
class InferShapeContext;
class ExecutionContext;
56

Q
Qiao Longfei 已提交
57 58 59 60 61 62 63 64
/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
65 66 67
  using VarNameMap = std::map<std::string, std::vector<std::string>>;

  OperatorBase(const std::string& type, const VarNameMap& inputs,
Y
Yu Yang 已提交
68
               const VarNameMap& outputs, const AttributeMap& attrs);
69 70 71 72 73

  OperatorBase(const OperatorBase& o) = delete;
  OperatorBase& operator=(const OperatorBase& o) = delete;
  OperatorBase(OperatorBase&& o) = delete;

Q
Qiao Longfei 已提交
74 75 76 77 78 79 80 81 82
  virtual ~OperatorBase() {}

  template <typename T>
  inline const T& GetAttr(const std::string& name) const {
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }

83
  virtual std::string DebugString() const;
Q
Qiao Longfei 已提交
84 85 86

  /// InferShape infer the size of Variables used by this Operator with
  /// information inside scope
Y
Yu Yang 已提交
87
  virtual void InferShape(const Scope& scope) const = 0;
Q
Qiao Longfei 已提交
88 89

  /// Net will call this function to Run an op.
Y
Yu Yang 已提交
90
  virtual void Run(const Scope& scope,
Y
Yu Yang 已提交
91 92
                   const platform::DeviceContext& dev_ctx) const = 0;

Y
Yu Yang 已提交
93 94
  virtual bool IsNetOp() const { return false; }

95 96
  virtual bool SupportGPU() const { return false; }

D
dongzhihong 已提交
97 98 99
  /// rename inputs outputs name
  void Rename(const std::string& old_name, const std::string& new_name);

Q
qiaolongfei 已提交
100 101
  const VarNameMap& Inputs() const { return inputs_; }
  const VarNameMap& Outputs() const { return outputs_; }
Y
Yu Yang 已提交
102
  //! Get a input with argument's name described in `op_proto`
Y
Yan Chunwei 已提交
103
  const std::string& Input(const std::string& name) const;
Y
Yu Yang 已提交
104
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
105
  const std::vector<std::string>& Inputs(const std::string& name) const;
Y
Yi Wang 已提交
106

Y
Yu Yang 已提交
107
  //! Get a output with argument's name described in `op_proto`
Y
Yan Chunwei 已提交
108
  const std::string& Output(const std::string& name) const;
Y
Yu Yang 已提交
109 110
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
111
  const std::vector<std::string>& Outputs(const std::string& name) const;
Y
Yan Chunwei 已提交
112

Y
Yu Yang 已提交
113
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
114

Q
qiaolongfei 已提交
115
  const std::string& Type() const { return type_; }
Q
qiaolongfei 已提交
116
  void SetType(const std::string& type) { type_ = type; }
Y
Yi Wang 已提交
117 118
  const AttributeMap& Attrs() const { return attrs_; }

Q
qiaolongfei 已提交
119
 protected:
Q
Qiao Longfei 已提交
120
  std::string type_;
D
dongzhihong 已提交
121 122 123 124
  // NOTE: in case of OpGrad, inputs_ contains:
  // I (Inputs)
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
125
  VarNameMap inputs_;
Y
Yu Yang 已提交
126

D
dongzhihong 已提交
127 128
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
129
  VarNameMap outputs_;
Q
Qiao Longfei 已提交
130
  AttributeMap attrs_;
Y
Yan Chunwei 已提交
131 132
};

133 134
class NOP : public OperatorBase {
 public:
135
  using OperatorBase::OperatorBase;
136 137 138 139 140
  void InferShape(const Scope& scope) const override {}
  void Run(const Scope& scope,
           const platform::DeviceContext& dev_ctx) const override {}
};

141
class InferShapeContext {
Y
Yan Chunwei 已提交
142
 public:
143 144
  InferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}
145

Y
Yu Yang 已提交
146
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
147
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
148 149
  }

Y
Yu Yang 已提交
150
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
151
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
152 153
  }

154
  const Variable* InputVar(const std::string& name) const {
Y
Yu Yang 已提交
155
    return scope_.FindVar(op_.Input(name));
Y
Yan Chunwei 已提交
156 157
  }

158
  Variable* OutputVar(const std::string& name) const {
Y
Yu Yang 已提交
159
    return scope_.FindVar(op_.Output(name));
Y
Yan Chunwei 已提交
160 161
  }

162 163
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
164 165
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
166
    res.reserve(names.size());
Y
Yan Chunwei 已提交
167
    std::transform(
168
        names.begin(), names.end(), std::back_inserter(res),
Y
Yu Yang 已提交
169
        [this](const std::string& name) { return scope_.FindVar(name); });
Y
Yan Chunwei 已提交
170 171 172
    return res;
  }

173
  std::vector<const Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
174 175
    auto names = op_.Outputs(name);
    std::vector<const Variable*> res;
176
    res.reserve(names.size());
Y
Yan Chunwei 已提交
177
    std::transform(
178
        names.begin(), names.end(), std::back_inserter(res),
Y
Yu Yang 已提交
179
        [this](const std::string& name) { return scope_.FindVar(name); });
Y
Yan Chunwei 已提交
180 181 182
    return res;
  }

183 184
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
185
    auto* var = InputVar(name);
Y
Yan Chunwei 已提交
186
    PADDLE_ENFORCE_NOT_NULL(var, "Input(%s) should not be nullptr", name);
187
    return &var->Get<T>();
188 189 190 191
  }

  template <typename T>
  T* Output(const std::string& name) const {
192
    auto var = OutputVar(name);
Y
Yan Chunwei 已提交
193
    PADDLE_ENFORCE_NOT_NULL(var, "Output(%s) should not be nullptr", name);
194
    return var->GetMutable<T>();
195 196 197 198 199 200 201 202
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
203
                   [&](const std::string& sub_name) {
204
                     auto var = scope_.FindVar(sub_name);
Y
Yan Chunwei 已提交
205 206 207
                     PADDLE_ENFORCE_NOT_NULL(
                         var, "MultiInput(%s:%s) should not be nullptr", name,
                         sub_name);
208
                     return &var->Get<T>();
209 210 211 212 213 214 215 216 217 218
                   });
    return res;
  }

  template <typename T>
  std::vector<const T*> MultiOutput(const std::string& name) const {
    auto names = op_.Outputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
219
                   [&](const std::string& sub_name) {
220
                     auto var = scope_.FindVar(sub_name);
Y
Yan Chunwei 已提交
221
                     PADDLE_ENFORCE_NOT_NULL(
F
fengjiayi 已提交
222
                         var, "MultiOutput(%s:%s) should not be nullptr.", name,
Y
Yan Chunwei 已提交
223
                         sub_name);
224
                     return var->GetMutable<T>();
225 226 227 228 229
                   });
    return res;
  }

  const OperatorBase& op_;
230
  const Scope& scope_;
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
};

template <typename T>
struct EigenDeviceConverter;

template <>
struct EigenDeviceConverter<platform::CPUPlace> {
  using EigenDeviceType = Eigen::DefaultDevice;
};

#ifndef PADDLE_ONLY_CPU
template <>
struct EigenDeviceConverter<platform::GPUPlace> {
  using EigenDeviceType = Eigen::GpuDevice;
};
#endif

248
class ExecutionContext : public InferShapeContext {
249
 public:
250
  ExecutionContext(const OperatorBase& op, const Scope& scope,
D
dongzhihong 已提交
251
                   const platform::DeviceContext* device_context)
252
      : InferShapeContext(op, scope), device_context_(device_context) {}
253

Q
qijun 已提交
254 255 256
  template <typename PlaceType,
            typename DeviceType =
                typename EigenDeviceConverter<PlaceType>::EigenDeviceType>
257
  DeviceType& GetEigenDevice() const;
Q
qijun 已提交
258

D
dongzhihong 已提交
259
  platform::Place GetPlace() const { return device_context_->GetPlace(); }
Q
qijun 已提交
260

Q
qijun 已提交
261
  const platform::DeviceContext* device_context() const {
Q
qijun 已提交
262
    return device_context_;
Q
qijun 已提交
263
  }
Q
qijun 已提交
264

D
dongzhihong 已提交
265
  const platform::DeviceContext* device_context_;
Q
Qiao Longfei 已提交
266 267
};

Q
qijun 已提交
268 269
class OpKernel {
 public:
Q
qijun 已提交
270
  /**
271
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
272 273
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
274
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
275 276
   */

277
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
278 279 280 281

  virtual ~OpKernel() {}
};

Q
Qiao Longfei 已提交
282 283
class OperatorWithKernel : public OperatorBase {
 public:
Y
Yu Yang 已提交
284 285
  struct OpKernelKey {
    platform::Place place_;
Q
Qiao Longfei 已提交
286

Y
Yu Yang 已提交
287
    OpKernelKey() = default;
L
liaogang 已提交
288
    explicit OpKernelKey(const platform::DeviceContext& dev_ctx) {
Y
Yu Yang 已提交
289 290 291
      place_ = dev_ctx.GetPlace();
    }

Q
qijun 已提交
292 293 294
    bool operator==(const OpKernelKey& o) const {
      return platform::places_are_same_class(place_, o.place_);
    }
Y
Yu Yang 已提交
295 296 297 298 299 300 301 302 303 304 305
  };

  struct OpKernelHash {
    std::hash<bool> hash_;
    size_t operator()(const OpKernelKey& key) const {
      return hash_(platform::is_gpu_place(key.place_));
    }
  };

  using OpKernelMap =
      std::unordered_map<OpKernelKey, std::unique_ptr<OpKernel>, OpKernelHash>;
Q
Qiao Longfei 已提交
306

Y
Yu Yang 已提交
307 308 309 310
  OperatorWithKernel(const std::string& type, const VarNameMap& inputs,
                     const VarNameMap& outputs, const AttributeMap& attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}

311
  void InferShape(const Scope& scope) const override {
312
    InferShape(InferShapeContext(*this, scope));
313 314
  }

Y
Yu Yang 已提交
315
  void Run(const Scope& scope,
Y
Yu Yang 已提交
316
           const platform::DeviceContext& dev_ctx) const final {
Q
Qiao Longfei 已提交
317
    auto& opKernel = AllOpKernels().at(type_).at(OpKernelKey(dev_ctx));
318
    opKernel->Compute(ExecutionContext(*this, scope, &dev_ctx));
Q
Qiao Longfei 已提交
319 320
  }

Y
Yu Yang 已提交
321 322 323 324
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
325
  }
Y
Yan Chunwei 已提交
326

327 328 329 330 331 332
  bool SupportGPU() const override {
    OperatorWithKernel::OpKernelKey key;
    key.place_ = platform::GPUPlace();
    return OperatorWithKernel::AllOpKernels().at(type_).count(key) != 0;
  }

Y
Yu Yang 已提交
333
 protected:
334
  virtual void InferShape(const InferShapeContext& ctx) const = 0;
Q
Qiao Longfei 已提交
335 336 337 338
};

}  // namespace framework
}  // namespace paddle