operator.h 5.8 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

Y
Yu Yang 已提交
17 18 19
#include <paddle/framework/attr_checker.h>
#include <paddle/framework/op_desc.pb.h>
#include <paddle/framework/scope.h>
Y
Yu Yang 已提交
20
#include <paddle/framework/tensor.h>
Y
Yu Yang 已提交
21 22 23
#include <paddle/platform/device_context.h>
#include <paddle/platform/place.h>
#include <paddle/utils/Error.h>
Q
Qiao Longfei 已提交
24 25 26 27 28 29 30 31 32
#include <boost/variant.hpp>
#include <string>
#include <unordered_map>
#include <vector>

namespace paddle {
namespace framework {

class OperatorBase;
Q
Qiao Longfei 已提交
33
using OperatorPtr = std::shared_ptr<OperatorBase>;
Q
Qiao Longfei 已提交
34 35 36 37 38 39 40 41
/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
42 43 44 45 46 47 48
  /// If a variable is a empty variable, that name will be used.
  static std::string EMPTY_VAR_NAME() { return "@EMPTY@"; }

  /// If a variable is a temporary variable, that name will be set in Python,
  /// but it will be convert to a unique name in scope after OpCreator.
  static std::string TMP_VAR_NAME() { return "@TEMP@"; }

Q
Qiao Longfei 已提交
49 50 51 52 53 54 55 56 57 58 59
  virtual ~OperatorBase() {}

  template <typename T>
  inline const T& GetAttr(const std::string& name) const {
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }

  std::string DebugString() const;

Q
Qiao Longfei 已提交
60 61 62 63
  /// Init will be called after CreateOperator, you can put some initialization
  /// logic here.
  virtual void Init() {}

Q
Qiao Longfei 已提交
64 65
  /// InferShape infer the size of Variables used by this Operator with
  /// information inside scope
Q
Qiao Longfei 已提交
66
  virtual void InferShape(const ScopePtr& scope) const = 0;
Q
Qiao Longfei 已提交
67 68

  /// Net will call this function to Run an op.
Q
Qiao Longfei 已提交
69
  virtual void Run(const ScopePtr& scope,
Y
Yu Yang 已提交
70 71 72
                   const platform::DeviceContext& dev_ctx) const = 0;

  std::string Type() const { return desc_.type(); }
Q
Qiao Longfei 已提交
73 74 75 76 77 78 79 80

 public:
  OpDesc desc_;
  std::vector<std::string> inputs_;
  std::vector<std::string> outputs_;
  AttributeMap attrs_;
};

Y
Yu Yang 已提交
81 82 83 84 85 86 87 88 89 90
class OpKernel {
 public:
  /**
   * KernelContext is the only parameter of Kernel Run function.
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
   * KernelContext. User should construct it before run the Operator.
   */
  class KernelContext {
   public:
Q
Qiao Longfei 已提交
91
    KernelContext(const OperatorBase* op, const ScopePtr& scope,
Y
Yu Yang 已提交
92 93 94 95 96 97 98 99 100 101 102 103
                  const platform::DeviceContext& device_context)
        : op_(*op), scope_(scope), device_context_(device_context) {}

    const Variable* Input(int index) const {
      return scope_->GetVariable(op_.inputs_[index]);
    }

    Variable* Output(int index) const {
      return scope_->GetVariable(op_.outputs_[index]);
    }

    const OperatorBase& op_;
Q
Qiao Longfei 已提交
104
    const ScopePtr& scope_;
Y
Yu Yang 已提交
105 106 107 108 109 110 111 112
    const platform::DeviceContext& device_context_;
  };

  virtual void Compute(const KernelContext& context) const = 0;

  virtual ~OpKernel() {}
};

Y
Yu Yang 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125
template <typename T>
struct VarToTensor {};

template <>
struct VarToTensor<Tensor*> {
  Tensor* operator()(Variable* var) { return var->GetMutable<Tensor>(); }
};

template <>
struct VarToTensor<const Tensor*> {
  const Tensor* operator()(Variable* var) { return &var->Get<Tensor>(); }
};

Q
Qiao Longfei 已提交
126 127
class OperatorWithKernel : public OperatorBase {
 public:
Y
Yu Yang 已提交
128 129
  struct OpKernelKey {
    platform::Place place_;
Q
Qiao Longfei 已提交
130

Y
Yu Yang 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    OpKernelKey() = default;
    OpKernelKey(const platform::DeviceContext& dev_ctx) {
      place_ = dev_ctx.GetPlace();
    }

    bool operator==(const OpKernelKey& o) const { return place_ == o.place_; }
  };

  struct OpKernelHash {
    std::hash<bool> hash_;
    size_t operator()(const OpKernelKey& key) const {
      return hash_(platform::is_gpu_place(key.place_));
    }
  };

  using OpKernelMap =
      std::unordered_map<OpKernelKey, std::unique_ptr<OpKernel>, OpKernelHash>;
Q
Qiao Longfei 已提交
148

Q
Qiao Longfei 已提交
149
  void Run(const ScopePtr& scope,
Y
Yu Yang 已提交
150 151 152
           const platform::DeviceContext& dev_ctx) const final {
    auto& opKernel = AllOpKernels().at(Type()).at(OpKernelKey(dev_ctx));
    opKernel->Compute(OpKernel::KernelContext(this, scope, dev_ctx));
Q
Qiao Longfei 已提交
153 154
  }

Y
Yu Yang 已提交
155 156 157 158
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
159 160 161 162 163 164 165
  }
  void InferShape(const std::shared_ptr<Scope>& scope) const final {
    std::vector<const Tensor*> ins;
    VarNamesToTensors(scope, inputs_, &ins);
    std::vector<Tensor*> outs;
    VarNamesToTensors(scope, outputs_, &outs);
    InferShape(ins, outs);
Y
Yu Yang 已提交
166
  };
Y
Yu Yang 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

 private:
  template <typename T>
  void VarNamesToTensors(const std::shared_ptr<Scope>& scope,
                         const std::vector<std::string>& var_names,
                         std::vector<T>* container) const {
    container->reserve(var_names.size());
    VarToTensor<T> convert;
    for (auto& name : var_names) {
      auto var = scope->GetVariable(name);
      if (var != nullptr) {
        container->push_back(convert(var));
      } else {
        container->push_back(nullptr);
      }
    }
  }

 protected:
  virtual void InferShape(const std::vector<const Tensor*>& inputs,
                          const std::vector<Tensor*>& outputs) const = 0;
Q
Qiao Longfei 已提交
188 189 190 191
};

}  // namespace framework
}  // namespace paddle