mkldnn_helper.h 19.7 KB
Newer Older
1
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.
T
tensor-tang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

16
#include <algorithm>
J
Jacek Czaja 已提交
17
#include <iostream>
P
Physher 已提交
18
#include <memory>
J
Jacek Czaja 已提交
19
#include <sstream>
G
gongweibao 已提交
20
#include <string>
21
#include <utility>
22
#include <vector>
23
#include "mkldnn.hpp"
24
#include "paddle/fluid/framework/operator.h"
M
mozga-intel 已提交
25
#include "paddle/fluid/platform/place.h"
26
#include "paddle/fluid/platform/profiler.h"
T
tensor-tang 已提交
27
namespace paddle {
28
#ifdef PADDLE_WITH_MKLDNN
A
Adam 已提交
29
using MKLDNNMemoryFormat = mkldnn::memory::format_tag;
30
#endif
T
tensor-tang 已提交
31 32 33 34 35
namespace platform {

using MKLDNNStream = mkldnn::stream;
using MKLDNNEngine = mkldnn::engine;
using MKLDNNMemory = mkldnn::memory;
36
using MKLDNNMemoryDescriptor = mkldnn::memory::desc;
T
tensor-tang 已提交
37 38 39
using MKLDNNPrimitive = mkldnn::primitive;
using MKLDNNPrimitiveDesc = mkldnn::handle<mkldnn_primitive_desc_t>;

40 41 42 43 44
typedef std::unique_ptr<MKLDNNStream> MKLDNNStreamPtr;
typedef std::unique_ptr<MKLDNNEngine> MKLDNNEnginePtr;
typedef std::unique_ptr<MKLDNNMemory> MKLDNNMemoryPtr;
typedef std::unique_ptr<MKLDNNPrimitive> MKLDNNPrimitivePtr;
typedef std::unique_ptr<MKLDNNPrimitiveDesc> MKLDNNPrimitiveDescPtr;
T
tensor-tang 已提交
45

46 47 48 49 50
template <typename Type>
void* to_void_cast(const Type* t) {
  return static_cast<void*>(const_cast<Type*>(t));
}

K
Krzysztof Binias 已提交
51 52 53 54 55
template <typename Type>
void* to_void_reinterpret_cast(const Type* t) {
  return reinterpret_cast<void*>(const_cast<Type*>(t));
}

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
template <class Type>
using tf_desc = typename Type::desc;

template <class Type>
using tf_pd = typename Type::primitive_desc;

template <typename Type, typename Engine, typename... Args>
std::shared_ptr<tf_pd<Type>> MKLDNNFwdPrimitiveDesc(const Engine& e,
                                                    Args&&... args) {
  auto desc = tf_desc<Type>(mkldnn::prop_kind::forward, (args)...);
  auto pd = new tf_pd<Type>(desc, e);
  return std::shared_ptr<tf_pd<Type>>(pd);
}

template <typename Type, typename Engine, typename Primitive, typename... Args>
tf_pd<Type> MKLDNNBwdPrimitiveDesc(const Engine& e, const Primitive& p,
                                   Args&&... args) {
  auto desc = tf_desc<Type>(args...);
  return tf_pd<Type>(desc, e, p);
}

77 78 79
inline void MatchShapeToLayout(framework::Tensor* tensor_in,
                               framework::DataLayout from,
                               framework::DataLayout to) {
80 81 82
  // In these data layouts, channel dimension is either on 2nd position: nChw or
  // at last nhwC, so for dim==2 these layouts are the same and nothing should
  // be done. Similarly for dim==1 when you have just one possible combination.
83 84 85 86
  if (tensor_in->dims().size() < 3) {
    return;
  }

J
Jacek Czaja 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
  auto print_dims = [](const std::vector<int>& dims) {
    std::ostringstream oss;

    if (!dims.empty()) {
      oss << "[";
      // Convert all but the last element to avoid a trailing ","
      std::copy(dims.begin(), dims.end() - 1,
                std::ostream_iterator<int>(oss, ","));

      // Now add the last element with no delimiter
      oss << dims.back() << "]";
    }

    return oss.str();
  };

103 104 105 106 107 108
  switch (from) {
    case framework::DataLayout::kMKLDNN:
      if (to == framework::DataLayout::kNHWC) {
        auto dims = framework::vectorize<int>(tensor_in->dims());
        std::rotate(dims.begin() + 1, dims.begin() + 2, dims.end());
        tensor_in->Resize(framework::make_ddim(dims));
J
Jacek Czaja 已提交
109 110
        VLOG(3) << "Rotating Shape from: kMKLDNN to: kNHWC output_shape"
                << print_dims(dims);
111 112 113 114 115 116 117
      }
      break;
    case framework::DataLayout::kNHWC:
      if (to == framework::DataLayout::kMKLDNN) {
        auto dims = framework::vectorize<int>(tensor_in->dims());
        std::rotate(dims.begin() + 1, dims.end() - 1, dims.end());
        tensor_in->Resize(framework::make_ddim(dims));
J
Jacek Czaja 已提交
118 119
        VLOG(3) << "Rotating Shape from: kNHWC to: kMKLDNN output_shape"
                << print_dims(dims);
120 121 122 123 124 125 126
      }
      break;
    default:
      break;
  }
}

127 128 129 130 131
struct mkldnn_dummy_primitive {
  struct primitive_desc {};
  struct desc {};
};

A
Adam 已提交
132
inline mkldnn::memory::desc MKLDNNMemDesc(const std::vector<int64_t>& dims,
133
                                          mkldnn::memory::data_type data_type,
134
                                          MKLDNNMemoryFormat format) {
A
Adam 已提交
135
  return mkldnn::memory::desc({dims}, data_type, format);
136 137
}

138 139
inline void ClearMKLDNNCache(const platform::Place& place,
                             void* ptr = nullptr) {
140 141 142 143 144
  // Clear mkl-dnn cache,
  if (platform::is_cpu_place(place)) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    platform::MKLDNNDeviceContext* dev_ctx =
        (platform::MKLDNNDeviceContext*)pool.Get(place);
145
    dev_ctx->ResetBlobMap(ptr);
146 147 148 149 150
    platform::MKLDNNDeviceContext::tls().set_cur_paddle_data_layout(
        paddle::framework::DataLayout::kNCHW);
  }
}

151 152 153 154 155 156 157 158 159 160
inline void DontClearMKLDNNCache(const platform::Place& place) {
  // Clear mkl-dnn cache,
  if (platform::is_cpu_place(place)) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    platform::MKLDNNDeviceContext* dev_ctx =
        (platform::MKLDNNDeviceContext*)pool.Get(place);
    dev_ctx->BlockNextCacheClearing();
  }
}

161 162
template <typename Type>
mkldnn::memory::data_type MKLDNNGetDataType() {
A
Adam 已提交
163
  return mkldnn::memory::data_type::undef;
164 165 166 167
}

template <>
inline mkldnn::memory::data_type MKLDNNGetDataType<float>() {
168 169 170 171 172
  return mkldnn::memory::data_type::f32;
}
template <>
inline mkldnn::memory::data_type MKLDNNGetDataType<int32_t>() {
  return mkldnn::memory::data_type::s32;
173
}
P
Physher 已提交
174 175
template <>
inline mkldnn::memory::data_type MKLDNNGetDataType<int8_t>() {
176
  return mkldnn::memory::data_type::s8;
P
Physher 已提交
177 178 179
}
template <>
inline mkldnn::memory::data_type MKLDNNGetDataType<uint8_t>() {
180
  return mkldnn::memory::data_type::u8;
P
Physher 已提交
181 182
}

183 184 185 186 187 188
template <>
inline mkldnn::memory::data_type
MKLDNNGetDataType<paddle::platform::bfloat16>() {
  return mkldnn::memory::data_type::bf16;
}

A
Adam 已提交
189 190
inline void Reorder(mkldnn::memory src, mkldnn::memory dst,
                    const mkldnn::engine& engine) {
M
mozga-intel 已提交
191
  auto reorder_prim = mkldnn::reorder(src, dst);
192
  auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
193 194
  platform::RecordEvent record_reorder("int_reorder",
                                       platform::EventRole::kUniqueOp);
A
Adam 已提交
195 196
  reorder_prim.execute(astream, src, dst);
  astream.wait();
M
mozga-intel 已提交
197 198
}

A
Adam 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
inline mkldnn::memory::format_tag GetMKLDNNFormat(
    mkldnn::memory::desc mem_desc) {
  auto ndims = mem_desc.data.ndims;
  auto strides = mem_desc.data.format_desc.blocking.strides;
  auto inner_nblks = mem_desc.data.format_desc.blocking.inner_nblks;
  auto inner_blks = mem_desc.data.format_desc.blocking.inner_blks;
  auto inner_idxs = mem_desc.data.format_desc.blocking.inner_idxs;

  if (ndims == 1) {
    return mkldnn::memory::format_tag::x;
  } else if (ndims == 2) {
    if (inner_nblks == 0) {
      if (strides[0] >= strides[1]) {
        return mkldnn::memory::format_tag::nc;
      } else {
        return mkldnn::memory::format_tag::cn;
      }
    }
  } else if (ndims == 3) {
    if (inner_nblks == 0) {
      if (strides[0] >= strides[1] && strides[1] >= strides[2]) {
        return mkldnn::memory::format_tag::ncw;
A
Adam 已提交
221 222
      } else if (strides[1] >= strides[0] && strides[0] >= strides[2]) {
        return mkldnn::memory::format_tag::ntc;
A
Adam 已提交
223 224 225 226 227 228 229 230 231
      } else {
        return mkldnn::memory::format_tag::nwc;
      }
    }
  } else if (ndims == 4) {
    if (inner_nblks == 0) {
      if (strides[0] >= strides[1] && strides[1] >= strides[2] &&
          strides[2] >= strides[3]) {
        return mkldnn::memory::format_tag::nchw;
232 233 234
      } else if (strides[2] >= strides[3] && strides[3] >= strides[1] &&
                 strides[1] >= strides[0]) {
        return mkldnn::memory::format_tag::cdba;
A
Adam 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
      } else {
        return mkldnn::memory::format_tag::nhwc;
      }
    } else if (inner_nblks == 1) {
      if (inner_blks[0] == 16 && inner_idxs[0] == 1) {
        return mkldnn::memory::format_tag::nChw16c;
      } else if (inner_blks[0] == 8 && inner_idxs[0] == 1) {
        return mkldnn::memory::format_tag::nChw8c;
      } else if (inner_blks[0] == 8 && inner_idxs[0] == 0) {
        if (strides[0] >= strides[2] && strides[2] >= strides[3] &&
            strides[3] >= strides[1]) {
          return mkldnn::memory::format_tag::Acdb8a;
        }
      } else if (inner_blks[0] == 4 && inner_idxs[0] == 1) {
        return mkldnn::memory::format_tag::nChw4c;
      } else if (inner_blks[0] == 16 && inner_idxs[0] == 0) {
        if (strides[0] >= strides[2] && strides[2] >= strides[3] &&
            strides[3] >= strides[1]) {
          return mkldnn::memory::format_tag::Acdb16a;
        }
      }
    } else if (inner_nblks == 2) {
      if (inner_blks[0] == 16 && inner_blks[1] == 16) {
        if (inner_idxs[0] == 1 && inner_idxs[1] == 0) {
          return mkldnn::memory::format_tag::OIhw16i16o;
        }
      } else if (inner_blks[0] == 8 && inner_blks[1] == 8) {
        if (inner_idxs[0] == 1 && inner_idxs[1] == 0) {
          return mkldnn::memory::format_tag::OIhw8i8o;
        }
      }
    }
  } else if (ndims == 5) {
    if (inner_nblks == 0) {
      if (strides[0] >= strides[1] && strides[1] >= strides[2] &&
          strides[2] >= strides[3] && strides[3] >= strides[4]) {
        return mkldnn::memory::format_tag::ncdhw;
      } else {
        return mkldnn::memory::format_tag::ndhwc;
      }
    } else if (inner_nblks == 1) {
      if (inner_blks[0] == 8 && inner_idxs[0] == 0) {
        if (strides[0] >= strides[2] && strides[2] >= strides[3] &&
            strides[3] >= strides[4] && strides[4] >= strides[1]) {
          return mkldnn::memory::format_tag::Acdeb8a;
        }
281 282 283 284
        if (strides[0] >= strides[1] && strides[1] >= strides[2] &&
            strides[2] >= strides[3] && strides[3] >= strides[4]) {
          return mkldnn::memory::format_tag::Abcde8a;
        }
A
Adam 已提交
285 286 287 288 289 290 291 292 293 294
      } else if (inner_blks[0] == 8 && inner_idxs[0] == 1) {
        if (strides[0] >= strides[1] && strides[1] >= strides[2] &&
            strides[2] >= strides[3] && strides[3] >= strides[4]) {
          return mkldnn::memory::format_tag::aBcde8b;
        }
      } else if (inner_blks[0] == 16 && inner_idxs[0] == 0) {
        if (strides[0] >= strides[2] && strides[2] >= strides[3] &&
            strides[3] >= strides[4] && strides[4] >= strides[1]) {
          return mkldnn::memory::format_tag::Acdeb16a;
        }
295 296 297 298
        if (strides[0] >= strides[1] && strides[1] >= strides[2] &&
            strides[2] >= strides[3] && strides[3] >= strides[4]) {
          return mkldnn::memory::format_tag::Abcde16a;
        }
A
Adam 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
      } else if (inner_blks[0] == 16 && inner_idxs[0] == 1) {
        if (strides[0] >= strides[1] && strides[1] >= strides[2] &&
            strides[2] >= strides[3] && strides[3] >= strides[4]) {
          return mkldnn::memory::format_tag::aBcde16b;
        }
      }
    }
  } else if (ndims == 6) {
    if (inner_nblks == 0) {
      if (strides[0] >= strides[1] && strides[1] >= strides[2] &&
          strides[2] >= strides[3] && strides[3] >= strides[4] &&
          strides[4] >= strides[5]) {
        return mkldnn::memory::format_tag::abcdef;
      }
    }
  }
  // DEBUG CODE - KEEP UNTILL TENSOR.MEMORY_DESC IMPLEMENTED
  // std::cout<<"@@@@@@@@@@ UNDEFINED FORMAT @@@@@@@@@@@@@@@@@@@"<<std::endl;
  // std::cout<<"NDIMS: "<<ndims<<std::endl;
  // std::cout<<"INNER_NBLKS: "<<inner_nblks<<std::endl;
  // for (int i=0;i<ndims;++i) {
  //   std::cout<<"STRIDE["<<i<<"]: "<<strides[i]<<std::endl;
  // }
  // for (int i=0;i<inner_nblks;++i) {
  //   std::cout<<"INNER_BLKS["<<i<<"]: "<<inner_blks[i]<<std::endl;
  // }
  // for (int i=0;i<inner_nblks;++i) {
  //   std::cout<<"INNER_IDXS["<<i<<"]: "<<inner_idxs[i]<<std::endl;
  // }
  return mkldnn::memory::format_tag::undef;
M
mozga-intel 已提交
329 330
}

A
Adam 已提交
331 332 333
inline mkldnn::memory::format_tag GetMKLDNNFormat(const mkldnn::memory memory) {
  auto mem_desc = memory.get_desc();
  return GetMKLDNNFormat(mem_desc);
334 335
}

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
inline mkldnn::memory::format_tag GetPlainMKLDNNFormat(int tensor_rank) {
  switch (tensor_rank) {
    case 1:
      return mkldnn::memory::format_tag::a;
      break;
    case 2:
      return mkldnn::memory::format_tag::ab;
      break;
    case 3:
      return mkldnn::memory::format_tag::abc;
      break;
    case 4:
      return mkldnn::memory::format_tag::abcd;
      break;
    case 5:
      return mkldnn::memory::format_tag::abcde;
      break;
    case 6:
      return mkldnn::memory::format_tag::abcdef;
      break;
    case 7:
      return mkldnn::memory::format_tag::abcdefg;
      break;
    case 8:
      return mkldnn::memory::format_tag::abcdefgh;
      break;
    case 9:
      return mkldnn::memory::format_tag::abcdefghi;
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Paddle support tensors with rank in range <1, 9>, but received "
          "tensor with rank: %d",
          tensor_rank));
  }
}

373 374
inline MKLDNNMemoryFormat MKLDNNFormatForSize(size_t dims_size,
                                              MKLDNNMemoryFormat data_format) {
375
  if (dims_size == 1) {
376
    return MKLDNNMemoryFormat::x;
377
  } else if (dims_size == 2) {
378
    return MKLDNNMemoryFormat::nc;
379
  } else if (dims_size == 3) {
380 381 382 383
    if (data_format == MKLDNNMemoryFormat::nchw) {
      return MKLDNNMemoryFormat::ncw;
    } else if (data_format == MKLDNNMemoryFormat::nhwc) {
      return MKLDNNMemoryFormat::nwc;
384
    }
385
  } else if (dims_size == 4) {
386 387
    if (data_format == MKLDNNMemoryFormat::goihw) {
      return MKLDNNMemoryFormat::oihw;
388
    }
389
  } else if (dims_size == 5) {
390 391
    if (data_format == MKLDNNMemoryFormat::goidhw) {
      return MKLDNNMemoryFormat::oidhw;
392
    }
393 394 395 396
    if (data_format == MKLDNNMemoryFormat::nchw) {
      return MKLDNNMemoryFormat::ncdhw;
    } else if (data_format == MKLDNNMemoryFormat::nhwc) {
      return MKLDNNMemoryFormat::ndhwc;
397
    }
398 399
  } else if (dims_size == 6) {
    return MKLDNNMemoryFormat::abcdef;
400 401 402 403
  }
  return data_format;
}

404
inline MKLDNNMemoryFormat data_format_to_memory_format(
405 406 407
    const std::string& data_format) {
  switch (framework::StringToDataLayout(data_format)) {
    case framework::DataLayout::kNHWC:
408
      return MKLDNNMemoryFormat::nhwc;
409
    case framework::DataLayout::kNCHW:
410
      return MKLDNNMemoryFormat::nchw;
411
    default:
412
      return MKLDNNMemoryFormat::any;
413 414 415
  }
}

416
inline MKLDNNMemoryFormat StringToMKLDNNFormat(std::string* format) {
417 418 419
  std::transform(format->begin(), format->end(), format->begin(), ::tolower);

  if (!format->compare("nchw")) {
420
    return MKLDNNMemoryFormat::nchw;
421
  } else if (!format->compare("nchw16c")) {
422
    return MKLDNNMemoryFormat::nChw16c;
423
  } else if (!format->compare("nchw8c")) {
424
    return MKLDNNMemoryFormat::nChw8c;
425
  } else if (!format->compare("nhwc")) {
426
    return MKLDNNMemoryFormat::nhwc;
427
  } else {
428
    return MKLDNNMemoryFormat::any;
429 430 431
  }
}

A
Adam 已提交
432 433 434 435 436
inline std::string ThreadIDasStr(void) {
  return std::to_string(
      std::hash<std::thread::id>()(std::this_thread::get_id()));
}

437 438 439
template <typename T>
inline void AppendKey(std::string* key, const T& num) {
  key->append(std::to_string(num));
A
Adam 已提交
440 441
}

A
Adam 已提交
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
template <>
inline void AppendKey(std::string* key,
                      const mkldnn::memory::format_tag& format) {
  key->append(std::to_string(static_cast<int>(format)));
}

template <>
inline void AppendKey(std::string* key,
                      const mkldnn::memory::data_type& data_type) {
  key->append(std::to_string(static_cast<int>(data_type)));
}

template <>
inline void AppendKey(std::string* key, const mkldnn::algorithm& algorithm) {
  key->append(std::to_string(static_cast<int>(algorithm)));
}

template <>
inline void AppendKey(std::string* key,
                      const mkldnn::normalization_flags& flags) {
  key->append(std::to_string(static_cast<int>(flags)));
}

465 466
inline void AppendKey(std::string* key, const std::string& str) {
  key->append(str);
A
Adam 已提交
467 468
}

469
inline void AppendKey(std::string* key, const char* str) { key->append(str); }
A
Adam 已提交
470

A
Adam 已提交
471 472
template <typename T>
inline void AppendKey(std::string* key, const std::vector<T>& dims) {
473
  for (size_t i = 0; i < dims.size(); i++) {
A
Adam 已提交
474 475 476 477
    AppendKey(key, std::to_string(dims[i]));
  }
}

478 479 480 481
// If MKLDNN build and CPU place then register suffix in DeviceContext
inline void AttachPointerHashToMKLDNNKey(void* ptr,
                                         const platform::Place& place) {
  if (platform::is_cpu_place(place)) {
J
Jacek Czaja 已提交
482 483 484 485 486 487 488 489 490 491 492 493 494
    // Static vars will remember first executor and its thread
    // so both of them need to be processed by the same thread within
    // critical section
    static std::mutex static_vars_barrier;
    static_vars_barrier.lock();
    static auto first_exec = ptr;
    static auto first_thread = ThreadIDasStr();
    static_vars_barrier.unlock();

    if (first_exec != ptr) {
      paddle::platform::MKLDNNDeviceContext::tls().set_key_suffix(
          "E" + std::to_string(reinterpret_cast<uintptr_t>(ptr)));
    }
495 496 497
    // Let's register adress of current executor
    paddle::platform::MKLDNNDeviceContext::tls().set_curr_exec(ptr);

J
Jacek Czaja 已提交
498 499 500 501
    // For first thread
    if (first_thread == ThreadIDasStr()) {
      paddle::platform::MKLDNNDeviceContext::tls().disable_tid_in_key();
    }
502 503 504
  }
}

505
template <typename... ArgTypes>
506 507
inline std::string CreateKey(const platform::MKLDNNDeviceContext& dev_ctx,
                             ArgTypes&&... args) {
508
  std::string key;
509
  key.reserve(64);
510
  using expand_type = int[];
511
  expand_type{0, (AppendKey(&key, std::forward<ArgTypes>(args)), 0)...};
J
Jacek Czaja 已提交
512
  key += paddle::platform::MKLDNNDeviceContext::tls().get_key_suffix();
513 514 515
  return key;
}

516 517
inline std::string ExtendKeyWithThreadInfoIfNeeded(
    const platform::MKLDNNDeviceContext& dev_ctx, const std::string& key) {
J
Jacek Czaja 已提交
518 519
  return (paddle::platform::MKLDNNDeviceContext::tls().is_tid_used_in_key() ==
          true)
520 521 522 523
             ? key + "-t:" + ThreadIDasStr()
             : key;
}

A
Adam 已提交
524 525
inline std::vector<std::vector<int64_t>> ToMkldnnPadding(
    const std::vector<int64_t>& paddings) {
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
  if (paddings.size() == 6) {
    int padding_front = paddings[0];
    int padding_back = paddings[1];
    int padding_top = paddings[2];
    int padding_bottom = paddings[3];
    int padding_left = paddings[4];
    int padding_right = paddings[5];

    return {{padding_front, padding_top, padding_left},
            {padding_back, padding_bottom, padding_right}};
  } else {
    int padding_top = paddings[0];
    int padding_bottom = paddings[1];
    int padding_left = paddings[2];
    int padding_right = paddings[3];

    return {{padding_top, padding_left}, {padding_bottom, padding_right}};
  }
}

546 547 548 549 550 551 552 553 554 555 556 557 558
// The function adjusts the vector of weight dimensions for group convolutions
inline void GetGroupConvWeightsTz(std::vector<int64_t>& weights_tz,  // NOLINT
                                  const int groups) {
  if (groups > 1) {
    // if (is_conv3d) [o, i, d, h, w]->[g, o/g, i, d, h, w]
    // else [o, i, h, w] -> [g, o/g, i, h, w]
    weights_tz.push_back(0);
    std::rotate(weights_tz.begin(), weights_tz.end() - 1, weights_tz.end());
    weights_tz[0] = groups;
    weights_tz[1] = weights_tz[1] / groups;
  }
}

559 560 561 562 563
inline bool HasOpINT8DataType(const paddle::framework::OpDesc* op) {
  return (op->GetAttrIfExists<std::string>("mkldnn_data_type") == "int8" ||
          op->GetAttrIfExists<bool>("use_quantizer"));
}

564 565 566 567 568 569 570
inline bool HasOpBFLOAT16DataType(const paddle::framework::OpDesc* op) {
  return op->GetAttrIfExists<std::string>("mkldnn_data_type") == "bfloat16";
}

inline bool HasOpFLOAT32DataType(const paddle::framework::OpDesc* op) {
  return op->GetAttrIfExists<std::string>("mkldnn_data_type") == "float32";
}
A
Adam Osewski 已提交
571

A
Adam 已提交
572 573
enum class RNNReorderType { PP_NTC, PP_TNC, NTC_PP, TNC_PP };

A
Adam Osewski 已提交
574 575 576 577 578
template <typename T>
bool constexpr is_int8() {
  return std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
}

T
tensor-tang 已提交
579 580
}  // namespace platform
}  // namespace paddle