conv2d_op.cc 7.1 KB
Newer Older
L
Luo Tao 已提交
1 2 3 4 5 6
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

L
Luo Tao 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
L
Luo Tao 已提交
8 9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

L
Luo Tao 已提交
15
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
L
Luo Tao 已提交
16 17 18 19 20

namespace paddle {
namespace inference {
namespace tensorrt {

21 22 23 24 25 26 27 28
template <typename RegistFunc, typename SetDilationFunc>
void ConvertConv2d(TensorRTEngine* engine, const framework::proto::OpDesc& op,
                   const framework::Scope& scope, bool test_mode,
                   RegistFunc fadd_layer, SetDilationFunc fset_dilation,
                   const std::string& name) {
  VLOG(3) << "convert a fluid " << name << " op to tensorrt layer without bias";

  framework::OpDesc op_desc(op, nullptr);
29 30 31 32 33 34 35 36 37 38 39 40
  PADDLE_ENFORCE_EQ(op_desc.Input("Input").size(), 1UL,
                    platform::errors::InvalidArgument(
                        "TRT Conv2d expect 1 input, but got %d input.",
                        op_desc.Input("Input").size()));
  PADDLE_ENFORCE_EQ(op_desc.Input("Filter").size(), 1UL,
                    platform::errors::InvalidArgument(
                        "TRT Conv2d expect 1 filter, but got %d filter.",
                        op_desc.Input("Filter").size()));
  PADDLE_ENFORCE_EQ(op_desc.Output("Output").size(), 1UL,
                    platform::errors::InvalidArgument(
                        "TRT Conv2d expect 1 output, but got %d output.",
                        op_desc.Output("Output").size()));
41 42

  auto* X = engine->GetITensor(op_desc.Input("Input").front());
43 44 45 46 47
  std::string filter_var_name = op_desc.Input("Filter").front();
  auto* Y_v = scope.FindVar(filter_var_name);
  PADDLE_ENFORCE_NOT_NULL(
      Y_v, platform::errors::NotFound(
               "Can not find %s presistale var in scope.", filter_var_name));
48
  auto* Y_t = Y_v->GetMutable<framework::LoDTensor>();
49 50 51 52 53
  float* weight_data = nullptr;
  bool enable_int8 = boost::get<bool>(op_desc.HasAttr("enable_int8"));

  if (enable_int8) {
#if IS_TRT_VERSION_GE(5000)
54 55
    CHECK(op_desc.HasAttr("Input_scale"));
    float in_scale = boost::get<float>(op_desc.GetAttr("Input_scale"));
56 57 58 59 60 61 62 63 64 65
    auto weight_scale =
        boost::get<std::vector<float>>(op_desc.GetAttr("weight_scale"));
    weight_data = engine->GetWeightCPUData(op_desc.Input("Filter").front(), Y_t,
                                           true, weight_scale);
    engine->SetTensorDynamicRange(X, in_scale);
#endif
  } else {
    weight_data =
        engine->GetWeightCPUData(op_desc.Input("Filter").front(), Y_t, false);
  }
66

67 68 69 70 71
  PADDLE_ENFORCE_EQ(Y_t->dims().size(), 4UL,
                    platform::errors::InvalidArgument(
                        "The conv2d filter's dims size should be 4, but got %d",
                        Y_t->dims().size()));

72 73 74 75
  const int n_output = Y_t->dims()[0];
  const int n_input = Y_t->dims()[1];
  const int filter_h = Y_t->dims()[2];
  const int filter_w = Y_t->dims()[3];
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
  const int groups = boost::get<int>(op_desc.GetAttr("groups"));
  const std::vector<int> dilations =
      boost::get<std::vector<int>>(op_desc.GetAttr("dilations"));
  const std::vector<int> strides =
      boost::get<std::vector<int>>(op_desc.GetAttr("strides"));
  const std::vector<int> paddings =
      boost::get<std::vector<int>>(op_desc.GetAttr("paddings"));

  nvinfer1::DimsHW nv_ksize(filter_h, filter_w);
  nvinfer1::DimsHW nv_dilations(dilations[0], dilations[1]);
  nvinfer1::DimsHW nv_strides(strides[0], strides[1]);
  nvinfer1::DimsHW nv_paddings(paddings[0], paddings[1]);

  TensorRTEngine::Weight weight{nvinfer1::DataType::kFLOAT,
                                static_cast<void*>(weight_data),
91
                                static_cast<size_t>(Y_t->numel())};
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107

  TensorRTEngine::Weight bias{nvinfer1::DataType::kFLOAT, nullptr, 0};
  auto* layer = fadd_layer(const_cast<nvinfer1::ITensor*>(X), n_output, n_input,
                           nv_ksize, weight, bias);
  PADDLE_ENFORCE(layer != nullptr);
  layer->setStride(nv_strides);
  layer->setPadding(nv_paddings);
  layer->setNbGroups(groups);
  // set dilations
  fset_dilation(layer, nv_dilations);

  auto output_name = op_desc.Output("Output").front();
  layer->setName((name + " (Output: " + output_name + ")").c_str());
  layer->getOutput(0)->setName(output_name.c_str());
  engine->SetITensor(output_name, layer->getOutput(0));

N
nhzlx 已提交
108
  if (test_mode) {
109 110 111 112
    engine->DeclareOutput(output_name);
  }
}

L
Luo Tao 已提交
113 114
class Conv2dOpConverter : public OpConverter {
 public:
115
  void operator()(const framework::proto::OpDesc& op,
116
                  const framework::Scope& scope, bool test_mode) override {
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    ConvertConv2d(
        engine_, op, scope, test_mode,
        [&](nvinfer1::ITensor* inputs, int n_output, /* Conv output maps */
            int n_input,                             /* Conv input maps */
            nvinfer1::DimsHW& ksize, TensorRTEngine::Weight& weight,
            TensorRTEngine::Weight& bias) -> nvinfer1::IConvolutionLayer* {
          auto* layer =
              TRT_ENGINE_ADD_LAYER(engine_, Convolution, *inputs, n_output,
                                   ksize, weight.get(), bias.get());
          return layer;
        },
        [](nvinfer1::IConvolutionLayer* layer, nvinfer1::DimsHW& dilations) {
          layer->setDilation(dilations);
        },
        "conv2d");
  }
};

class Deconv2dOpConverter : public OpConverter {
 public:
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
    ConvertConv2d(
        engine_, op, scope, test_mode,
        [&](nvinfer1::ITensor* inputs, int n_output, /* Deconv input maps */
            int n_input,                             /* Deconv output maps */
            nvinfer1::DimsHW& ksize, TensorRTEngine::Weight& weight,
            TensorRTEngine::Weight& bias) -> nvinfer1::IDeconvolutionLayer* {
          auto* layer =
              TRT_ENGINE_ADD_LAYER(engine_, Deconvolution, *inputs, n_input,
                                   ksize, weight.get(), bias.get());
          return layer;
        },
        [](nvinfer1::IDeconvolutionLayer* layer, nvinfer1::DimsHW& dilations) {
151 152 153 154 155 156 157 158
          // In trt Deconv, dilation should be 1, ohter values are not
          // supported.
          bool condition = (dilations.d[0] == 1 && dilations.d[1] == 1);
          PADDLE_ENFORCE_EQ(condition, true,
                            platform::errors::InvalidArgument(
                                "In Deconv, Dilations must be (1, 1) for "
                                "tensorRT, but given (%d, %d)",
                                dilations.d[0], dilations.d[1]));
159 160
        },
        "conv2d_transpose");
L
Luo Tao 已提交
161 162
  }
};
L
Luo Tao 已提交
163

L
Luo Tao 已提交
164 165 166
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle
167 168

REGISTER_TRT_OP_CONVERTER(conv2d, Conv2dOpConverter);
169
REGISTER_TRT_OP_CONVERTER(conv2d_transpose, Deconv2dOpConverter);