test_full_op.py 7.0 KB
Newer Older
W
wangchaochaohu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
from op_test import OpTest

import paddle.fluid.core as core
from paddle.fluid.op import Operator
import paddle.fluid as fluid
24
import paddle
W
wangchaochaohu 已提交
25
from paddle.fluid import compiler, Program, program_guard
26
from paddle.fluid.framework import _test_eager_guard
W
wangchaochaohu 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40


# Test python API
class TestFullAPI(unittest.TestCase):
    def test_api(self):
        positive_2_int32 = fluid.layers.fill_constant([1], "int32", 2)

        positive_2_int64 = fluid.layers.fill_constant([1], "int64", 2)
        shape_tensor_int32 = fluid.data(
            name="shape_tensor_int32", shape=[2], dtype="int32")

        shape_tensor_int64 = fluid.data(
            name="shape_tensor_int64", shape=[2], dtype="int64")

41
        out_1 = paddle.full(shape=[1, 2], dtype="float32", fill_value=1.1)
W
wangchaochaohu 已提交
42

43
        out_2 = paddle.full(
44
            shape=[1, positive_2_int32], dtype="float32", fill_value=1.1)
W
wangchaochaohu 已提交
45

46
        out_3 = paddle.full(
47
            shape=[1, positive_2_int64], dtype="float32", fill_value=1.1)
W
wangchaochaohu 已提交
48

49
        out_4 = paddle.full(
50
            shape=shape_tensor_int32, dtype="float32", fill_value=1.2)
W
wangchaochaohu 已提交
51

52
        out_5 = paddle.full(
53
            shape=shape_tensor_int64, dtype="float32", fill_value=1.1)
W
wangchaochaohu 已提交
54

55
        out_6 = paddle.full(
W
wangchaochaohu 已提交
56 57
            shape=shape_tensor_int64, dtype=np.float32, fill_value=1.1)

58 59 60 61
        val = fluid.layers.fill_constant(shape=[1], dtype=np.float32, value=1.1)
        out_7 = paddle.full(
            shape=shape_tensor_int64, dtype=np.float32, fill_value=val)

W
wangchaochaohu 已提交
62
        exe = fluid.Executor(place=fluid.CPUPlace())
63
        res_1, res_2, res_3, res_4, res_5, res_6, res_7 = exe.run(
W
wangchaochaohu 已提交
64 65 66 67 68
            fluid.default_main_program(),
            feed={
                "shape_tensor_int32": np.array([1, 2]).astype("int32"),
                "shape_tensor_int64": np.array([1, 2]).astype("int64"),
            },
69
            fetch_list=[out_1, out_2, out_3, out_4, out_5, out_6, out_7])
W
wangchaochaohu 已提交
70 71 72

        assert np.array_equal(res_1, np.full([1, 2], 1.1, dtype="float32"))
        assert np.array_equal(res_2, np.full([1, 2], 1.1, dtype="float32"))
73
        assert np.array_equal(res_3, np.full([1, 2], 1.1, dtype="float32"))
W
wangchaochaohu 已提交
74 75 76
        assert np.array_equal(res_4, np.full([1, 2], 1.2, dtype="float32"))
        assert np.array_equal(res_5, np.full([1, 2], 1.1, dtype="float32"))
        assert np.array_equal(res_6, np.full([1, 2], 1.1, dtype="float32"))
77
        assert np.array_equal(res_7, np.full([1, 2], 1.1, dtype="float32"))
W
wangchaochaohu 已提交
78

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
    def test_api_eager(self):
        with fluid.dygraph.base.guard():
            with _test_eager_guard():
                positive_2_int32 = fluid.layers.fill_constant([1], "int32", 2)

                positive_2_int64 = fluid.layers.fill_constant([1], "int64", 2)
                out_1 = paddle.full(
                    shape=[1, 2], dtype="float32", fill_value=1.1)

                out_2 = paddle.full(
                    shape=[1, positive_2_int32.item()],
                    dtype="float32",
                    fill_value=1.1)

                out_3 = paddle.full(
                    shape=[1, positive_2_int64.item()],
                    dtype="float32",
                    fill_value=1.1)

                out_4 = paddle.full(
                    shape=[1, 2], dtype="float32", fill_value=1.2)

                out_5 = paddle.full(
                    shape=[1, 2], dtype="float32", fill_value=1.1)

                out_6 = paddle.full(
                    shape=[1, 2], dtype=np.float32, fill_value=1.1)

                val = fluid.layers.fill_constant(
                    shape=[1], dtype=np.float32, value=1.1)
                out_7 = paddle.full(
                    shape=[1, 2], dtype=np.float32, fill_value=val)
111 112 113
                # test for numpy.float64 as fill_value
                out_8 = paddle.full_like(
                    out_7, dtype=np.float32, fill_value=np.abs(1.1))
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

                assert np.array_equal(
                    out_1, np.full(
                        [1, 2], 1.1, dtype="float32"))
                assert np.array_equal(
                    out_2, np.full(
                        [1, 2], 1.1, dtype="float32"))
                assert np.array_equal(
                    out_3, np.full(
                        [1, 2], 1.1, dtype="float32"))
                assert np.array_equal(
                    out_4, np.full(
                        [1, 2], 1.2, dtype="float32"))
                assert np.array_equal(
                    out_5, np.full(
                        [1, 2], 1.1, dtype="float32"))
                assert np.array_equal(
                    out_6, np.full(
                        [1, 2], 1.1, dtype="float32"))
                assert np.array_equal(
                    out_7, np.full(
                        [1, 2], 1.1, dtype="float32"))
136 137 138
                assert np.array_equal(
                    out_8, np.full(
                        [1, 2], 1.1, dtype="float32"))
139

W
wangchaochaohu 已提交
140 141 142 143 144 145

class TestFullOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            #for ci coverage
            self.assertRaises(
146
                TypeError, paddle.full, shape=[1], fill_value=5, dtype='uint4')
W
wangchaochaohu 已提交
147 148

            # The argument dtype of full must be one of bool, float16,
149
            #float32, float64, uint8, int16, int32 or int64
W
wangchaochaohu 已提交
150 151 152

            # The argument shape's type of full_op  must be list, tuple or Variable.
            def test_shape_type():
153
                paddle.full(shape=1, dtype="float32", fill_value=1)
W
wangchaochaohu 已提交
154 155 156 157 158

            self.assertRaises(TypeError, test_shape_type)

            # The argument shape's size of full_op must not be 0.
            def test_shape_size():
159
                paddle.full(shape=[], dtype="float32", fill_value=1)
W
wangchaochaohu 已提交
160 161 162 163 164 165 166

            self.assertRaises(AssertionError, test_shape_size)

            # The shape dtype of full op must be int32 or int64.
            def test_shape_tensor_dtype():
                shape = fluid.data(
                    name="shape_tensor", shape=[2], dtype="float32")
167
                paddle.full(shape=shape, dtype="float32", fill_value=1)
W
wangchaochaohu 已提交
168 169 170 171 172 173

            self.assertRaises(TypeError, test_shape_tensor_dtype)

            def test_shape_tensor_list_dtype():
                shape = fluid.data(
                    name="shape_tensor_list", shape=[1], dtype="bool")
174
                paddle.full(shape=[shape, 2], dtype="float32", fill_value=1)
W
wangchaochaohu 已提交
175 176 177 178 179 180

            self.assertRaises(TypeError, test_shape_tensor_list_dtype)


if __name__ == "__main__":
    unittest.main()