transpose_op.cc 4.1 KB
Newer Older
X
xzl 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/transpose_op.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class TransposeOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
Q
Qiao Longfei 已提交
27 28 29 30 31
  void InferShape(framework::InferShapeContextBase* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) should not be null");
    auto x_dims = ctx->GetInputDim("X");
    std::vector<int> axis = ctx->Attrs().Get<std::vector<int>>("axis");
X
xzl 已提交
32
    size_t x_rank = x_dims.size();
X
xzl 已提交
33
    size_t axis_size = axis.size();
X
xzl 已提交
34

X
xzl 已提交
35
    PADDLE_ENFORCE_EQ(x_rank, axis_size,
36
                      "the input tensor's rank(%d) "
37
                      "should be equal to the axis's size(%d)",
X
xzl 已提交
38
                      x_rank, axis_size);
39 40 41 42 43 44 45 46

    std::vector<int> count(axis_size, 0);
    for (size_t i = 0; i < axis_size; i++) {
      PADDLE_ENFORCE(
          axis[i] < static_cast<int>(axis_size) && ++count[axis[i]] == 1,
          "Each element of Attribute axis should be a unique value "
          "range from 0 to (dims - 1), "
          "where the dims is the axis's size");
X
xzl 已提交
47
    }
X
xzl 已提交
48

X
xzl 已提交
49
    framework::DDim out_dims(x_dims);
50
    for (size_t i = 0; i < axis_size; i++) {
X
xzl 已提交
51
      out_dims[i] = x_dims[axis[i]];
X
xzl 已提交
52
    }
Q
Qiao Longfei 已提交
53
    ctx->SetOutputDim("Out", out_dims);
X
xzl 已提交
54 55 56 57 58
  }
};

class TransposeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Q
Qiao Longfei 已提交
59 60
  TransposeOpMaker(framework::OpProto* proto,
                   framework::OpAttrChecker* op_checker)
X
xzl 已提交
61
      : OpProtoAndCheckerMaker(proto, op_checker) {
62
    AddInput(
X
xzl 已提交
63
        "X",
64
        "(Tensor)The input tensor, tensors with rank at most 6 are supported");
X
xzl 已提交
65
    AddOutput("Out", "(Tensor)The output tensor");
X
xzl 已提交
66 67
    AddAttr<std::vector<int>>(
        "axis",
68
        "(vector<int>)a list of values, and the size of the list should be "
69
        "the same with the input tensor rank, the tensor will "
X
xzl 已提交
70
        "permute the axes according the the values given");
X
xzl 已提交
71
    AddComment(R"DOC(
X
xzl 已提交
72
The Tensor will be permuted according to the axis values given.
73 74 75 76 77 78 79 80
The op is very much like the numpy.transpose function in python
For example:
 >> input = numpy.arange(6).reshape((2,3))
 >> input
 array([[0, 1, 2],
        [3, 4, 5]])
 >> axis = [1, 0]
 >> output = input.transpose(axis)
Q
Qiao Longfei 已提交
81
 >> output
82 83 84 85
 array([[0, 3],
        [1, 4],
		[2, 5]])
So, given a input tensor of shape(N, C, H, W) and the axis is {0, 2, 3, 1},
X
xzl 已提交
86 87 88 89 90 91 92 93 94 95
the output tensor shape will be (N, H, W, C)
)DOC");
  }
};

class TransposeOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
Q
Qiao Longfei 已提交
96 97 98 99 100 101 102 103 104
  void InferShape(framework::InferShapeContextBase* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
    auto x_dims = ctx->GetInputDim("X");
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    }
X
xzl 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(transpose, ops::TransposeOp, ops::TransposeOpMaker, transpose_grad,
            ops::TransposeOpGrad);
REGISTER_OP_CPU_KERNEL(transpose,
                       ops::TransposeKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
    transpose_grad,
    ops::TransposeGradKernel<paddle::platform::CPUPlace, float>);