mlu_baseop.cc 199.8 KB
Newer Older
F
fwenguang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/mlu/mlu_baseop.h"
16

17
#include "paddle/fluid/framework/convert_utils.h"
18
#include "paddle/fluid/framework/data_type.h"
F
fwenguang 已提交
19
#include "paddle/fluid/framework/framework.pb.h"
20
#include "paddle/fluid/framework/operator.h"
F
fwenguang 已提交
21 22 23 24

namespace paddle {
namespace operators {

25 26 27 28
cnnlCastDataType_t GetCastDataType(const VT::Type& src_type,
                                   const VT::Type& dst_type) {
  cnnlCastDataType_t cast_type = CNNL_CAST_FLOAT_TO_HALF;
  for (auto it = MLU_SUPPORTED_CAST_TYPE.begin();
29 30
       it != MLU_SUPPORTED_CAST_TYPE.end();
       ++it) {
31 32 33 34 35 36 37 38
    if (it->first.first == src_type && it->first.second == dst_type) {
      cast_type = it->second;
      break;
    }
  }
  return cast_type;
}

39 40 41 42 43 44
cnnlCastDataType_t GetCastDataType(const DataType& src_type,
                                   const DataType& dst_type) {
  return GetCastDataType(framework::TransToProtoVarType(src_type),
                         framework::TransToProtoVarType(dst_type));
}

45 46
bool MLUSupportsCast(const VT::Type& src_type, const VT::Type& dst_type) {
  for (auto it = MLU_SUPPORTED_CAST_TYPE.begin();
47 48
       it != MLU_SUPPORTED_CAST_TYPE.end();
       ++it) {
49 50 51 52 53 54 55
    if (it->first.first == src_type && it->first.second == dst_type) {
      return true;
    }
  }
  return false;
}

Q
qipengh 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
const std::shared_ptr<MLUCnnlRandomGeneratorDesc>& GetMLURandomGenerator(
    const ExecutionContext& ctx, const int64_t device_id, const int seed) {
  static int64_t num_mlu_devices = -1;
  static std::once_flag num_devices_init_flag;
  static std::deque<std::once_flag> mlu_device_flags;
  static std::vector<std::shared_ptr<MLUCnnlRandomGeneratorDesc>>
      mlu_rand_generators;

  std::call_once(num_devices_init_flag, []() {
    num_mlu_devices = paddle::platform::GetMLUDeviceCount();
    mlu_device_flags.resize(num_mlu_devices);
    mlu_rand_generators.resize(num_mlu_devices);
  });
  if (device_id < 0) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "mlu device id shoule be greater than 0"));
  }

  std::call_once(mlu_device_flags[device_id], [&]() {
    mlu_rand_generators[device_id].reset(
        new MLUCnnlRandomGeneratorDesc(ctx, seed));
    VLOG(4) << "device_id: " << device_id << ", initial seed: " << seed;
  });
  return mlu_rand_generators[device_id];
}

F
fwenguang 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
class MLUCnnlTensorDescPool {
 public:
  cnnlTensorDescriptor_t Pop() {
    cnnlTensorDescriptor_t raw_desc;
    if (q_.try_dequeue(raw_desc)) {
      return raw_desc;
    } else {
      cnnlCreateTensorDescriptor(&raw_desc);
      return raw_desc;
    }
  }

  void Recycle(cnnlTensorDescriptor_t desc) {
    cnnlResetTensorDescriptor(desc);
    q_.enqueue(desc);
  }

  ~MLUCnnlTensorDescPool() {
    auto size = q_.size_approx();
    if (size > 0) {
      std::vector<cnnlTensorDescriptor_t> vec(size);
      q_.try_dequeue_bulk(vec.data(), size);
      for (auto desc : vec) {
        cnnlDestroyTensorDescriptor(desc);
      }
    }
  }

 private:
  moodycamel::ConcurrentQueue<cnnlTensorDescriptor_t> q_;
};

static MLUCnnlTensorDescPool g_cnnl_tensor_desc_pool;

116
MLUCnnlTensorDesc& MLUCnnlTensorDesc::operator=(MLUCnnlTensorDesc&& rhs) {
F
fwenguang 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
  if (raw_tensor_desc) {
    g_cnnl_tensor_desc_pool.Recycle(raw_tensor_desc);
  }
  raw_tensor_desc = rhs.raw_tensor_desc;
  rhs.raw_tensor_desc = nullptr;
  return *this;
}

MLUCnnlTensorDesc::MLUCnnlTensorDesc(const int tensor_dim,
                                     const int dim_sizes[],
                                     const cnnlDataType_t tensor_dtype) {
  raw_tensor_desc = g_cnnl_tensor_desc_pool.Pop();
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetTensorDescriptor(
      raw_tensor_desc, CNNL_LAYOUT_ARRAY, tensor_dtype, tensor_dim, dim_sizes));
}

MLUCnnlTensorDesc::MLUCnnlTensorDesc(const int tensor_dim,
                                     const int dim_sizes[],
                                     const cnnlDataType_t tensor_dtype,
                                     const cnnlTensorLayout_t layout) {
  raw_tensor_desc = g_cnnl_tensor_desc_pool.Pop();
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetTensorDescriptor(
      raw_tensor_desc, layout, tensor_dtype, tensor_dim, dim_sizes));
}

MLUCnnlTensorDesc::MLUCnnlTensorDesc(const int tensor_dim,
                                     const int dim_sizes[],
                                     const cnnlDataType_t tensor_dtype,
                                     int position)
    : MLUCnnlTensorDesc(tensor_dim, dim_sizes, tensor_dtype) {
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSetTensorDescriptorPosition(raw_tensor_desc, position));
}

MLUCnnlTensorDesc::MLUCnnlTensorDesc(const int tensor_dim,
                                     const int64_t dim_sizes[],
                                     const cnnlDataType_t tensor_dtype) {
  std::vector<int> dim_sizes_int32(tensor_dim);
  std::vector<int64_t>::const_iterator int64_cbegin(dim_sizes);
  std::vector<int64_t>::const_iterator int64_cend(dim_sizes + tensor_dim);
157 158 159
  std::transform(int64_cbegin,
                 int64_cend,
                 dim_sizes_int32.begin(),
F
fwenguang 已提交
160 161
                 &CheckedNarrowing<int64_t, int>);
  raw_tensor_desc = g_cnnl_tensor_desc_pool.Pop();
162 163 164 165 166
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetTensorDescriptor(raw_tensor_desc,
                                                     CNNL_LAYOUT_ARRAY,
                                                     tensor_dtype,
                                                     tensor_dim,
                                                     dim_sizes_int32.data()));
F
fwenguang 已提交
167 168 169 170 171 172 173 174 175
}

MLUCnnlTensorDesc::MLUCnnlTensorDesc(const int tensor_dim,
                                     const int64_t dim_sizes[],
                                     const cnnlDataType_t tensor_dtype,
                                     const cnnlTensorLayout_t layout) {
  std::vector<int> dim_sizes_int32(tensor_dim);
  std::vector<int64_t>::const_iterator int64_cbegin(dim_sizes);
  std::vector<int64_t>::const_iterator int64_cend(dim_sizes + tensor_dim);
176 177 178
  std::transform(int64_cbegin,
                 int64_cend,
                 dim_sizes_int32.begin(),
F
fwenguang 已提交
179 180
                 &CheckedNarrowing<int64_t, int>);
  raw_tensor_desc = g_cnnl_tensor_desc_pool.Pop();
181 182 183 184
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetTensorDescriptor(raw_tensor_desc,
                                                     layout,
                                                     tensor_dtype,
                                                     tensor_dim,
F
fwenguang 已提交
185 186 187 188 189 190 191 192 193 194
                                                     dim_sizes_int32.data()));
}

MLUCnnlTensorDesc::MLUCnnlTensorDesc(const int tensor_dim,
                                     const int64_t dim_sizes[],
                                     const cnnlDataType_t tensor_dtype,
                                     int position) {
  std::vector<int> dim_sizes_int32(tensor_dim);
  std::vector<int64_t>::const_iterator int64_cbegin(dim_sizes);
  std::vector<int64_t>::const_iterator int64_cend(dim_sizes + tensor_dim);
195 196 197
  std::transform(int64_cbegin,
                 int64_cend,
                 dim_sizes_int32.begin(),
F
fwenguang 已提交
198 199
                 &CheckedNarrowing<int64_t, int>);
  raw_tensor_desc = g_cnnl_tensor_desc_pool.Pop();
200 201 202 203 204
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetTensorDescriptor(raw_tensor_desc,
                                                     CNNL_LAYOUT_ARRAY,
                                                     tensor_dtype,
                                                     tensor_dim,
                                                     dim_sizes_int32.data()));
F
fwenguang 已提交
205 206 207 208
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSetTensorDescriptorPosition(raw_tensor_desc, position));
}

209
MLUCnnlTensorDesc::MLUCnnlTensorDesc(const Tensor& tensor,
F
fwenguang 已提交
210 211
                                     const cnnlTensorLayout_t layout,
                                     const cnnlDataType_t tensor_dtype) {
212
  auto dims = phi::vectorize<int>(tensor.dims());
F
fwenguang 已提交
213 214 215 216 217 218 219 220 221
  int tensor_dim = dims.size();
  raw_tensor_desc = g_cnnl_tensor_desc_pool.Pop();
  if (tensor_dim == 0) {
    int scalar_dims[1] = {1};
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetTensorDescriptor(
        raw_tensor_desc, layout, tensor_dtype, 1, scalar_dims));
  } else {
    std::vector<int> tensor_dim_sizes_int(dims.begin(), dims.end());
    PADDLE_ENFORCE_MLU_SUCCESS(
222 223 224 225 226
        cnnlSetTensorDescriptor(raw_tensor_desc,
                                layout,
                                tensor_dtype,
                                tensor_dim,
                                tensor_dim_sizes_int.data()));
F
fwenguang 已提交
227 228 229
  }
}

230
MLUCnnlTensorDesc::MLUCnnlTensorDesc(const Tensor& tensor)
231 232
    : MLUCnnlTensorDesc(
          tensor, CNNL_LAYOUT_ARRAY, ToCnnlDataType(tensor.dtype())) {}
233

234
MLUCnnlTensorDesc::MLUCnnlTensorDesc(const Tensor& tensor,
F
fwenguang 已提交
235 236 237 238 239 240 241 242
                                     cnnlTensorLayout_t layout,
                                     const cnnlDataType_t tensor_dtype,
                                     int position)
    : MLUCnnlTensorDesc(tensor, layout, tensor_dtype) {
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSetTensorDescriptorPosition(raw_tensor_desc, position));
}

243
MLUCnnlTensorDesc::MLUCnnlTensorDesc(const Tensor& tensor,
F
fwenguang 已提交
244 245
                                     cnnlTensorLayout_t layout,
                                     const cnnlDataType_t tensor_dtype,
246 247
                                     int position,
                                     float scale)
F
fwenguang 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261
    : MLUCnnlTensorDesc(tensor, layout, tensor_dtype) {
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetTensorDescriptorPositionAndScale(
      raw_tensor_desc, position, scale));
}

MLUCnnlTensorDesc::~MLUCnnlTensorDesc() {
  if (raw_tensor_desc) {
    g_cnnl_tensor_desc_pool.Recycle(raw_tensor_desc);
  }
}

MLUCnnlActivationDesc::MLUCnnlActivationDesc(
    const cnnlActivationMode_t act_mode, const float ceof) {
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlCreateActivationDescriptor(&active_desc_));
262
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetActivationDescriptor_v4(
263 264 265 266 267 268
      active_desc_,
      act_mode,
      CNNL_ACTIVATION_HIGH_PRECISION,
      CNNL_NOT_PROPAGATE_NAN,
      ceof,
      1.0f /*sliced_dim*/,
269 270 271 272 273
      1.67326319217681884765625 /*selu_alpha*/,
      1.05070102214813232421875 /*selu_lambda*/));
}

MLUCnnlActivationDesc::MLUCnnlActivationDesc(
274 275 276 277 278
    const cnnlActivationMode_t act_mode,
    const float ceof,
    const float sliced_dim,
    const float selu_alpha,
    const float selu_lambda) {
279
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlCreateActivationDescriptor(&active_desc_));
280 281 282 283 284 285 286 287 288
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSetActivationDescriptor_v4(active_desc_,
                                     act_mode,
                                     CNNL_ACTIVATION_HIGH_PRECISION,
                                     CNNL_NOT_PROPAGATE_NAN,
                                     ceof,
                                     sliced_dim,
                                     selu_alpha,
                                     selu_lambda));
F
fwenguang 已提交
289 290 291 292 293 294 295 296 297 298 299 300
}

const cnnlActivationDescriptor_t MLUCnnlActivationDesc::get() const {
  return active_desc_;
}

MLUCnnlActivationDesc::~MLUCnnlActivationDesc() {
  if (active_desc_) {
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlDestroyActivationDescriptor(active_desc_));
  }
}

301
MLUCnnlPoolingDesc::MLUCnnlPoolingDesc(
302 303 304 305 306 307 308 309 310 311 312 313 314
    const cnnlPoolingMode_t mode,
    const cnnlNanPropagation_t maxpooling_nan_opt,
    int window_rows,
    int window_cols,
    int64_t pad_up,
    int64_t pad_down,
    int64_t pad_left,
    int64_t pad_right,
    int row_stride,
    int col_stride,
    int row_dilation,
    int col_dilation,
    bool ceil_mode) {
315
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlCreatePoolingDescriptor(&pooling_desc_));
316 317 318 319 320 321 322 323 324 325 326 327 328 329
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetPooling2dDescriptor_v2(pooling_desc_,
                                                           mode,
                                                           maxpooling_nan_opt,
                                                           window_rows,
                                                           window_cols,
                                                           pad_up,
                                                           pad_down,
                                                           pad_left,
                                                           pad_right,
                                                           row_stride,
                                                           col_stride,
                                                           row_dilation,
                                                           col_dilation,
                                                           ceil_mode));
330 331 332
}

MLUCnnlPoolingDesc::MLUCnnlPoolingDesc(
333 334 335 336 337 338
    const cnnlPoolingMode_t mode,
    const cnnlNanPropagation_t maxpooling_nan_opt,
    const int tensor_rank,
    const std::vector<int>& window,
    const std::vector<int>& padding,
    const std::vector<int>& stride) {
339
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlCreatePoolingDescriptor(&pooling_desc_));
340 341 342 343 344 345 346
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetPoolingNdDescriptor(pooling_desc_,
                                                        mode,
                                                        maxpooling_nan_opt,
                                                        tensor_rank,
                                                        window.data(),
                                                        padding.data(),
                                                        stride.data()));
347 348 349 350 351 352 353 354 355 356 357 358
}

const cnnlPoolingDescriptor_t MLUCnnlPoolingDesc::get() const {
  return pooling_desc_;
}

MLUCnnlPoolingDesc::~MLUCnnlPoolingDesc() {
  if (pooling_desc_) {
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlDestroyPoolingDescriptor(pooling_desc_));
  }
}

Q
qipengh 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
MLUCnnlRandomGeneratorDesc::MLUCnnlRandomGeneratorDesc(
    const ExecutionContext& ctx, const int seed) {
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlRandCreateGenerator(&mlu_generator, CNNL_RAND_RNG_MTGP32));
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlRandSetPseudoRandomGeneratorSeed(mlu_generator, seed));
  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlRandGetMTGP32StateSize(mlu_generator, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  mlu_state = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* mlu_state_ptr = mlu_state.mutable_data(ctx.GetPlace());

  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlRandMakeMTGP32KernelState(
      handle, mlu_state_ptr, nullptr, nullptr, seed));
377 378 379 380 381 382
}

const cnnlRandGenerator_t MLUCnnlRandomGeneratorDesc::get() const {
  return mlu_generator;
}

Q
qipengh 已提交
383 384
Tensor& MLUCnnlRandomGeneratorDesc::get_state() { return mlu_state; }

385 386 387 388 389 390 391 392 393 394 395 396
MLUCnnlRandomGeneratorDesc::~MLUCnnlRandomGeneratorDesc() {
  if (mlu_generator) {
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlRandDestroyGenerator(mlu_generator));
  }
}

MLUCnnlNMSDesc::MLUCnnlNMSDesc(const cnnlNmsOutputMode_t mode,
                               const float iou_threshold,
                               const int max_output_size,
                               const float confidence_threshold,
                               const int input_layout) {
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlCreateNmsDescriptor(&nms_desc_));
397 398 399 400 401 402
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetNmsDescriptor_v2(nms_desc_,
                                                     mode,
                                                     iou_threshold,
                                                     max_output_size,
                                                     confidence_threshold,
                                                     input_layout));
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
}

const cnnlNmsDescriptor_t MLUCnnlNMSDesc::get() const { return nms_desc_; }

MLUCnnlNMSDesc::~MLUCnnlNMSDesc() {
  if (nms_desc_) {
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlDestroyNmsDescriptor(nms_desc_));
  }
}

MLUCnnlReduceDesc::MLUCnnlReduceDesc(const std::vector<int>& axis_vec,
                                     const cnnlReduceOp_t reduce_op,
                                     const cnnlDataType_t data_type,
                                     const cnnlNanPropagation_t nan_propagation,
                                     const cnnlReduceIndices_t reduce_indices,
                                     const cnnlIndicesType_t indices_type) {
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlCreateReduceDescriptor(&reduction_desc_));
420 421 422 423 424 425 426 427 428
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSetReduceDescriptor(reduction_desc_,
                              const_cast<int*>(axis_vec.data()),
                              axis_vec.size(),
                              reduce_op,
                              data_type,
                              nan_propagation,
                              reduce_indices,
                              indices_type));
429 430 431 432 433 434 435 436 437 438 439 440 441
}

const cnnlReduceDescriptor_t MLUCnnlReduceDesc::get() const {
  return reduction_desc_;
}

MLUCnnlReduceDesc::~MLUCnnlReduceDesc() {
  if (reduction_desc_) {
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlDestroyReduceDescriptor(reduction_desc_));
  }
}

MLUCnnlOpTensorDesc::MLUCnnlOpTensorDesc(
442 443
    cnnlOpTensorDesc_t op_tensor_op,
    cnnlDataType_t op_tensor_comp_type,
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
    cnnlNanPropagation_t op_tensor_nan_opt) {
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlCreateOpTensorDescriptor(&op_tensor_desc_));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetOpTensorDescriptor(
      op_tensor_desc_, op_tensor_op, op_tensor_comp_type, op_tensor_nan_opt));
}

const cnnlOpTensorDescriptor_t MLUCnnlOpTensorDesc::get() const {
  return op_tensor_desc_;
}

MLUCnnlOpTensorDesc::~MLUCnnlOpTensorDesc() {
  if (op_tensor_desc_) {
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlDestroyOpTensorDescriptor(op_tensor_desc_));
  }
}

MLUCnnlConvolutionDesc::MLUCnnlConvolutionDesc(
461 462 463 464 465 466
    const int dims,
    const int pad[],
    const int stride[],
    const int dilation[],
    const int group_count,
    const cnnlDataType_t tensor_dtype) {
467 468 469 470 471 472
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlCreateConvolutionDescriptor(&conv_desc_));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetConvolutionDescriptor(
      conv_desc_, dims, pad, stride, dilation, group_count, tensor_dtype));
}

MLUCnnlConvolutionDesc::MLUCnnlConvolutionDesc(
473 474 475 476 477
    const int dims,
    const int64_t pad[],
    const int64_t stride[],
    const int64_t dilation[],
    const int group_count,
478 479 480 481 482 483 484 485 486 487 488 489 490
    const cnnlDataType_t tensor_dtype) {
  const int spatial_dims = dims - 2;
  const int pad_dims = spatial_dims * 2;
  std::vector<int> pad_int32(pad_dims);
  std::vector<int> stride_int32(spatial_dims);
  std::vector<int> dilation_int32(spatial_dims);
  std::vector<int64_t>::const_iterator int64_pad_cbegin(pad);
  std::vector<int64_t>::const_iterator int64_pad_cend(pad + pad_dims);
  std::vector<int64_t>::const_iterator int64_stride_cbegin(stride);
  std::vector<int64_t>::const_iterator int64_stride_cend(stride + spatial_dims);
  std::vector<int64_t>::const_iterator int64_dilation_cbegin(dilation);
  std::vector<int64_t>::const_iterator int64_dilation_cend(dilation +
                                                           spatial_dims);
491 492 493
  std::transform(int64_pad_cbegin,
                 int64_pad_cend,
                 pad_int32.begin(),
494
                 &CheckedNarrowing<int64_t, int>);
495 496 497 498 499 500 501
  std::transform(int64_stride_cbegin,
                 int64_stride_cend,
                 stride_int32.begin(),
                 &CheckedNarrowing<int64_t, int>);
  std::transform(int64_dilation_cbegin,
                 int64_dilation_cend,
                 dilation_int32.begin(),
502 503
                 &CheckedNarrowing<int64_t, int>);
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlCreateConvolutionDescriptor(&conv_desc_));
504 505 506 507 508 509 510
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetConvolutionDescriptor(conv_desc_,
                                                          dims,
                                                          pad_int32.data(),
                                                          stride_int32.data(),
                                                          dilation_int32.data(),
                                                          group_count,
                                                          tensor_dtype));
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
}

const cnnlConvolutionDescriptor_t MLUCnnlConvolutionDesc::get() const {
  return conv_desc_;
}

MLUCnnlConvolutionDesc::~MLUCnnlConvolutionDesc() {
  if (conv_desc_) {
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlDestroyConvolutionDescriptor(conv_desc_));
  }
}

MLUCnnlBatchSpaceDesc::MLUCnnlBatchSpaceDesc(uint32_t block_shape[],
                                             uint32_t paddings[],
                                             const uint32_t block_shape_size,
                                             const uint32_t paddings_size) {
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlCreateSpaceBatchNdDescriptor(&op_desc_));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetSpaceBatchNdDescriptor(
      op_desc_, block_shape, block_shape_size, paddings, paddings_size));
}

void MLUCnnlBatchSpaceDesc::getSpace2batchNdextraInputSize(
    const ExecutionContext& ctx, const cnnlTensorDescriptor_t input_desc) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetSpace2batchNdExtraInputSize(
      handle, input_desc, op_desc_, &extra_input_size_));
}

void MLUCnnlBatchSpaceDesc::getBatch2spaceNdextraInputSize(
    const ExecutionContext& ctx, const cnnlTensorDescriptor_t input_desc) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetBatch2spaceNdExtraInputSize(
      handle, input_desc, op_desc_, &extra_input_size_));
}

void MLUCnnlBatchSpaceDesc::initSpace2batchNdExtraInput(
547 548
    const ExecutionContext& ctx,
    const cnnlTensorDescriptor_t input_desc,
549 550 551 552 553 554 555
    void* extra_host_input) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlInitSpace2batchNdExtraInput(
      handle, input_desc, op_desc_, extra_host_input));
}

void MLUCnnlBatchSpaceDesc::initBatch2spaceNdExtraInput(
556 557
    const ExecutionContext& ctx,
    const cnnlTensorDescriptor_t input_desc,
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
    void* extra_host_input) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlInitBatch2spaceNdExtraInput(
      handle, input_desc, op_desc_, extra_host_input));
}

const cnnlSpaceBatchNdDescriptor_t MLUCnnlBatchSpaceDesc::get() const {
  return op_desc_;
}

size_t MLUCnnlBatchSpaceDesc::getExtraInputSize() const {
  return extra_input_size_;
}

MLUCnnlBatchSpaceDesc::~MLUCnnlBatchSpaceDesc() {
  if (op_desc_) {
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlDestroySpaceBatchNdDescriptor(op_desc_));
  }
}

MLUCnnlTrigonDesc::MLUCnnlTrigonDesc(
    const cnnlTrigonFunctionMode_t trigon_function_mode) {
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlCreateTrigonDescriptor(&trigon_desc_));
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSetTrigonDescriptor(trigon_desc_, trigon_function_mode));
}

const cnnlTrigonDescriptor_t MLUCnnlTrigonDesc::get() const {
  return trigon_desc_;
}

MLUCnnlTrigonDesc::~MLUCnnlTrigonDesc() {
  if (trigon_desc_) {
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlDestroyTrigonDescriptor(trigon_desc_));
  }
}

595 596 597 598 599 600 601
MLUCnnlDCNDesc::MLUCnnlDCNDesc(int dimNb,
                               const int* pad,
                               const int* stride,
                               const int* dilation,
                               int deformable_group,
                               int conv_group,
                               int im2col_step) {
602 603
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlCreateDCNDescriptor(&dcn_desc_));
  const cnnlDataType_t compute_type = CNNL_DTYPE_FLOAT;
604 605 606 607 608 609 610 611 612
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetDCNDescriptor(dcn_desc_,
                                                  dimNb,
                                                  pad,
                                                  stride,
                                                  dilation,
                                                  deformable_group,
                                                  conv_group,
                                                  im2col_step,
                                                  compute_type));
613 614 615 616 617 618 619 620 621 622
}

const cnnlDCNDescriptor_t MLUCnnlDCNDesc::get() const { return dcn_desc_; }

MLUCnnlDCNDesc::~MLUCnnlDCNDesc() {
  if (dcn_desc_) {
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlDestroyDCNDescriptor(dcn_desc_));
  }
}

623
/* static */ void MLUCnnl::Active(const ExecutionContext& ctx,
F
fwenguang 已提交
624 625
                                  cnnlActivationDescriptor_t active_desc,
                                  const cnnlTensorDescriptor_t input_desc,
626
                                  const void* input,
F
fwenguang 已提交
627
                                  const cnnlTensorDescriptor_t output_desc,
628 629
                                  void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
F
fwenguang 已提交
630 631 632 633 634

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlActivationForward(
      handle, active_desc, NULL, input_desc, input, NULL, output_desc, output));
}

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
/* static */ void MLUCnnl::ActiveGrad(const ExecutionContext& ctx,
                                      cnnlActivationDescriptor_t active_desc,
                                      const void* alpha,
                                      const void* beta,
                                      const cnnlTensorDescriptor_t y_desc,
                                      const void* y,
                                      const cnnlTensorDescriptor_t diff_y_desc,
                                      const void* diff_y,
                                      const cnnlTensorDescriptor_t x_desc,
                                      const void* x,
                                      const cnnlTensorDescriptor_t diff_x_desc,
                                      void* diff_x) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlActivationBackward(handle,
                                                    active_desc,
                                                    alpha,
                                                    y_desc,
                                                    y,
                                                    diff_y_desc,
                                                    diff_y,
                                                    x_desc,
                                                    x,
                                                    beta,
                                                    diff_x_desc,
                                                    diff_x));
F
fwenguang 已提交
661 662
}

663
/* static */ void MLUCnnl::Concat(const ExecutionContext& ctx,
664 665
                                  const int pack_num,
                                  const int axis,
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
                                  const cnnlTensorDescriptor_t inputs_desc[],
                                  const void* const inputs[],
                                  const cnnlTensorDescriptor_t output_desc,
                                  void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size = 0;
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetConcatWorkspaceSize(handle, pack_num, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

681 682 683 684 685 686 687 688 689
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlConcat(handle,
                                        pack_num,
                                        axis,
                                        inputs_desc,
                                        inputs,
                                        workspace_ptr,
                                        workspace_size,
                                        output_desc,
                                        output));
690 691
}

Z
zn 已提交
692
/* static */ void MLUCnnl::Concat(const MLUDeviceContext& dev_ctx,
693 694
                                  const int pack_num,
                                  const int axis,
Z
zn 已提交
695 696 697 698 699 700 701 702 703 704 705 706 707 708
                                  const cnnlTensorDescriptor_t inputs_desc[],
                                  const void* const inputs[],
                                  const cnnlTensorDescriptor_t output_desc,
                                  void* output) {
  cnnlHandle_t handle = dev_ctx.cnnl_handle();

  size_t workspace_size = 0;
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetConcatWorkspaceSize(handle, pack_num, &workspace_size));

  Tensor workspace(paddle::experimental::DataType::INT8);
  workspace.Resize(framework::DDim({static_cast<int64_t>(workspace_size)}));
  void* workspace_ptr = workspace.mutable_data(dev_ctx.GetPlace());

709 710 711 712 713 714 715 716 717
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlConcat(handle,
                                        pack_num,
                                        axis,
                                        inputs_desc,
                                        inputs,
                                        workspace_ptr,
                                        workspace_size,
                                        output_desc,
                                        output));
Z
zn 已提交
718 719
}

720 721 722 723 724 725 726 727
/* static */ void MLUCnnl::Div(const ExecutionContext& ctx,
                               cnnlComputationPreference_t prefer,
                               const cnnlTensorDescriptor_t in0_desc,
                               const void* in0,
                               const cnnlTensorDescriptor_t in1_desc,
                               const void* in1,
                               const cnnlTensorDescriptor_t output_desc,
                               void* output) {
728 729 730 731 732 733 734 735 736 737 738
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size = 0;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetDivWorkspaceSize(
      handle, in0_desc, in1_desc, output_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

739 740 741 742 743 744 745 746 747 748
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlDiv_v2(handle,
                                        prefer,
                                        in0_desc,
                                        in0,
                                        in1_desc,
                                        in1,
                                        workspace_ptr,
                                        workspace_size,
                                        output_desc,
                                        output));
749 750
}

751 752 753
/* static */ void MLUCnnl::Fill(const ExecutionContext& ctx,
                                const cnnlPointerMode_t pointer_mode,
                                const void* value_ptr,
754 755 756 757
                                const cnnlTensorDescriptor_t output_desc,
                                void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

758 759
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlFill_v3(handle, pointer_mode, value_ptr, output_desc, output));
760 761 762
}

/* static */ void MLUCnnl::QuantifyOffline(
763 764 765 766 767 768
    const ExecutionContext& ctx,
    cnnlQuantizeMode_t mode,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    const cnnlTensorDescriptor_t output_desc,
    void* output) {
769 770 771 772 773 774 775
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlQuantizeV1(handle, mode, input_desc, input, output_desc, output));
}

/* static */ void MLUCnnl::LRN(const ExecutionContext& ctx,
776 777 778 779
                               const int local_size,
                               const double alpha,
                               const double beta,
                               const double k,
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
                               const cnnlTensorDescriptor_t input_quant_desc,
                               const void* input_quant,
                               const cnnlTensorDescriptor_t output_desc,
                               void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetLrnWorkspaceSize(
      handle, input_quant_desc, output_desc, local_size, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

  const cnnlLrnMode_t mode = CNNL_LRN_CROSS_CHANNEL;
796 797 798 799 800 801 802 803 804 805 806 807
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlLrn(handle,
                                     mode,
                                     local_size,
                                     alpha,
                                     beta,
                                     k,
                                     workspace_ptr,
                                     workspace_size,
                                     input_quant_desc,
                                     const_cast<void*>(input_quant),
                                     output_desc,
                                     output));
808 809 810
}

/* static */ void MLUCnnl::QuantifyOnline(
811 812 813 814 815 816 817 818 819
    const ExecutionContext& ctx,
    const int bitwidth,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    const bool compute_scale,
    void* position,
    void* scale,
    const cnnlTensorDescriptor_t output_desc,
    void* output) {
820 821 822 823 824 825 826 827 828 829 830 831 832 833
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetQuantizeParamWorkspaceSize(handle, input_desc, &workspace_size));

  // use ctx allocate interface for profiling purpose
  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

  const cnnlQuantizeMode_t mode =
      compute_scale ? CNNL_QUANTIZE_POSITION_SCALE : CNNL_QUANTIZE_POSITION;
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlQuantizeParam(handle,
                                               mode,
                                               input_desc,
                                               input,
                                               bitwidth,
                                               workspace_ptr,
                                               workspace_size,
                                               position,
                                               scale,
                                               nullptr));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlQuantizeV2(handle,
                                            mode,
                                            input_desc,
                                            input,
                                            position,
                                            scale,
                                            nullptr,
                                            output_desc,
                                            output));
}

/* static */ void MLUCnnl::Range(const ExecutionContext& ctx,
                                 const void* start,
                                 const void* end,
                                 const void* step,
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
                                 const cnnlDataType_t output_dtype,
                                 void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlArange(handle, start, end, step, output_dtype, output));
}

/* static */ void MLUCnnl::Round(const ExecutionContext& ctx,
                                 const cnnlTensorDescriptor_t input_desc,
                                 const void* input,
                                 const cnnlTensorDescriptor_t output_desc,
                                 void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlRound(handle, input_desc, input, output_desc, output));
}

/* static */ void MLUCnnl::SparseSoftmaxXentWithLogits(
878 879 880 881 882 883 884 885 886 887
    const ExecutionContext& ctx,
    cnnlSoftmaxMode_t mode,
    const cnnlTensorDescriptor_t x_desc,
    const void* input,
    const cnnlTensorDescriptor_t label_desc,
    const void* label,
    const cnnlTensorDescriptor_t y_desc,
    void* output,
    const cnnlTensorDescriptor_t diff_y_desc,
    void* back_out) {
888 889
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

F
fwenguang 已提交
890
  const cnnlComputationPreference_t prefer = CNNL_COMPUTATION_HIGH_PRECISION;
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSparseSoftmaxCrossEntropyWithLogits_v2(handle,
                                                 prefer,
                                                 mode,
                                                 x_desc,
                                                 input,
                                                 label_desc,
                                                 label,
                                                 y_desc,
                                                 output,
                                                 diff_y_desc,
                                                 back_out));
}

/* static */ void MLUCnnl::Cumsum(const ExecutionContext& ctx,
                                  const int axis,
                                  const bool exclusive,
                                  const bool reverse,
909 910
                                  const cnnlTensorDescriptor_t input_desc,
                                  const void* input,
911
                                  const cnnlTensorDescriptor_t output_desc,
912 913 914 915 916
                                  void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  // NAN propagation mode: Only support CNNL_NOT_PROPAGATE_NAN now.
  cnnlNanPropagation_t mode = CNNL_NOT_PROPAGATE_NAN;
917 918 919 920 921 922 923 924
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlCumsum(handle,
                                        input_desc,
                                        input,
                                        axis,
                                        exclusive,
                                        reverse,
                                        mode,
                                        output_desc,
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
                                        output));
}

/* static */ void MLUCnnl::BroadcastTo(const ExecutionContext& ctx,
                                       const cnnlTensorDescriptor_t input_desc,
                                       const void* input,
                                       const cnnlTensorDescriptor_t output_desc,
                                       void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlExpand(handle, input_desc, input, output_desc, output));
}

/* static */ void MLUCnnl::AssignAdd(const ExecutionContext& ctx,
940 941
                                     const void* alpha,
                                     const void* beta,
942 943 944 945 946 947 948 949 950 951 952
                                     const cnnlTensorDescriptor_t update_desc,
                                     const void* update,
                                     const cnnlTensorDescriptor_t param_desc,
                                     void* param) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlAssignAdd(
      handle, alpha, update_desc, update, nullptr, 0, beta, param_desc, param));
}

/* static */ void MLUCnnl::AssignSub(const ExecutionContext& ctx,
953 954
                                     const void* alpha,
                                     const void* beta,
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
                                     const cnnlTensorDescriptor_t update_desc,
                                     const void* update,
                                     const cnnlTensorDescriptor_t param_desc,
                                     void* param) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlAssignSub(
      handle, alpha, update_desc, update, nullptr, 0, beta, param_desc, param));
}

/* static */ void MLUCnnl::Assign(const ExecutionContext& ctx,
                                  const cnnlTensorDescriptor_t update_desc,
                                  const void* update,
                                  const cnnlTensorDescriptor_t param_desc,
                                  void* param) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlCopy(handle, update_desc, update, param_desc, param));
}

/* static */ void MLUCnnl::SGD(const ExecutionContext& ctx,
                               const cnnlTensorDescriptor_t grad_desc,
978 979
                               const void* grad,
                               const void* lr,
980 981 982 983 984 985 986 987
                               const cnnlTensorDescriptor_t var_desc,
                               void* var) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGradientDescent(handle, grad_desc, grad, lr, var_desc, var));
}

988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
/* static */ void MLUCnnl::ApplyAdaGrad(const ExecutionContext& ctx,
                                        const cnnlTensorDescriptor_t grad_desc,
                                        const void* grad,
                                        const cnnlTensorDescriptor_t accum_desc,
                                        void* accum,
                                        const cnnlTensorDescriptor_t var_desc,
                                        void* var,
                                        const void* lr,
                                        const bool update_slots) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlApplyAdaGrad(handle,
                                              grad_desc,
                                              grad,
                                              accum_desc,
                                              accum,
                                              var_desc,
                                              var,
                                              lr,
                                              update_slots));
}

/* static */ void MLUCnnl::ApplyRMSProp(const ExecutionContext& ctx,
                                        const cnnlTensorDescriptor_t grad_desc,
                                        const void* grad,
                                        const void* lr,
                                        const void* rho,
                                        const void* momentum,
                                        const void* epsilon,
                                        const cnnlTensorDescriptor_t var_desc,
                                        void* var,
                                        const cnnlTensorDescriptor_t ms_desc,
                                        void* ms,
                                        const cnnlTensorDescriptor_t mom_desc,
                                        void* mom) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlRMSProp(handle,
                                         lr,
                                         rho,
                                         epsilon,
                                         momentum,
                                         grad_desc,
                                         grad,
                                         var_desc,
                                         var,
                                         ms_desc,
                                         ms,
                                         mom_desc,
                                         mom));
1038 1039 1040
}

/* static */ void MLUCnnl::ApplyCenterRMSProp(
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
    const ExecutionContext& ctx,
    const cnnlTensorDescriptor_t grad_desc,
    const void* grad,
    const void* lr,
    const void* rho,
    const void* momentum,
    const void* epsilon,
    const cnnlTensorDescriptor_t var_desc,
    void* var,
    const cnnlTensorDescriptor_t mg_desc,
    void* mg,
    const cnnlTensorDescriptor_t ms_desc,
    void* ms,
    const cnnlTensorDescriptor_t mom_desc,
    void* mom) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlApplyCenterRMSProp(handle,
                                                    var_desc,
                                                    var,
                                                    mg_desc,
                                                    mg,
                                                    ms_desc,
                                                    ms,
                                                    mom_desc,
                                                    mom,
                                                    grad_desc,
                                                    grad,
                                                    lr,
                                                    rho,
                                                    momentum,
                                                    epsilon));
}

/* static */ void MLUCnnl::ApplyAdam(const ExecutionContext& ctx,
                                     const cnnlTensorDescriptor_t var_desc,
                                     void* var,
                                     const cnnlTensorDescriptor_t m_desc,
                                     void* m,
                                     const cnnlTensorDescriptor_t v_desc,
                                     void* v,
                                     const cnnlTensorDescriptor_t grad_desc,
                                     const void* grad,
                                     const void* lr,
                                     const void* beta1,
                                     const void* beta2,
                                     const void* beta1_power,
                                     const void* beta2_power,
                                     const void* epsilon,
                                     const bool use_nesterov) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlApplyAdam(handle,
                                           var_desc,
                                           var,
                                           m_desc,
                                           m,
                                           v_desc,
                                           v,
                                           grad_desc,
                                           grad,
                                           lr,
                                           beta1,
                                           beta2,
                                           beta1_power,
                                           beta2_power,
                                           epsilon,
                                           use_nesterov));
}

/* static */ void MLUCnnl::ApplyAdaMax(const ExecutionContext& ctx,
                                       const cnnlTensorDescriptor_t grad_desc,
                                       const cnnlTensorDescriptor_t var_desc,
                                       void* var,
                                       const cnnlTensorDescriptor_t m_desc,
                                       void* m,
                                       const cnnlTensorDescriptor_t v_desc,
                                       void* v,
                                       const void* diff,
                                       const void* lr,
                                       const void* beta1,
                                       const void* beta2,
                                       const void* beta1_power,
                                       const void* epsilon) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlApplyAdaMax(handle,
                                             var_desc,
                                             var,
                                             m_desc,
                                             m,
                                             v_desc,
                                             v,
                                             grad_desc,
                                             diff,
                                             lr,
                                             beta1,
                                             beta2,
                                             beta1_power,
                                             epsilon));
1141 1142 1143 1144 1145 1146
}

/* static */ void MLUCnnl::ApplyMomentum(const ExecutionContext& ctx,
                                         const cnnlTensorDescriptor_t grad_desc,
                                         const void* grad,
                                         const bool use_nesterov,
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
                                         const void* lr,
                                         const void* momentum,
                                         void* var,
                                         void* accum) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlMomentum(handle,
                                          grad_desc,
                                          var,
                                          grad_desc,
                                          accum,
                                          grad_desc,
                                          grad,
                                          lr,
                                          momentum,
1162 1163 1164 1165
                                          use_nesterov));
}

/* static */ void MLUCnnl::ApplyKerasMomentum(
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
    const ExecutionContext& ctx,
    const cnnlTensorDescriptor_t grad_desc,
    const void* grad,
    const bool use_nesterov,
    const void* lr,
    const void* momentum,
    void* var,
    void* accum) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlKerasMomentum(handle,
                                               grad_desc,
                                               var,
                                               grad_desc,
                                               accum,
                                               grad_desc,
                                               grad,
                                               lr,
                                               momentum,
                                               use_nesterov));
1186 1187 1188 1189
}

/* static */ void MLUCnnl::ApplyAdadelta(const ExecutionContext& ctx,
                                         const cnnlTensorDescriptor_t grad_desc,
1190 1191 1192 1193 1194 1195
                                         const void* diff,
                                         const void* lr,
                                         const void* rho,
                                         const void* epsilon,
                                         void* var,
                                         void* accum,
1196 1197 1198
                                         void* accum_update) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlApplyAdadelta(handle,
                                               grad_desc,
                                               var,
                                               grad_desc,
                                               accum,
                                               grad_desc,
                                               accum_update,
                                               grad_desc,
                                               diff,
                                               lr,
                                               rho,
                                               epsilon));
1211 1212
}

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
/* static */ void MLUCnnl::Scale(const ExecutionContext& ctx,
                                 const int axis,
                                 const cnnlTensorDescriptor_t input_desc,
                                 const void* input,
                                 const cnnlTensorDescriptor_t alpha_desc,
                                 const void* alpha,
                                 const cnnlTensorDescriptor_t beta_desc,
                                 const void* beta,
                                 const cnnlTensorDescriptor_t output_desc,
                                 void* output) {
1223 1224
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlScale(handle,
                                       axis,
                                       input_desc,
                                       input,
                                       alpha_desc,
                                       alpha,
                                       beta_desc,
                                       beta,
                                       output_desc,
                                       output));
1235 1236
}

1237 1238
/* static */ void MLUCnnl::AddN(const ExecutionContext& ctx,
                                uint32_t input_num,
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
                                const cnnlTensorDescriptor_t inputs_desc[],
                                const void* inputs[],
                                const cnnlTensorDescriptor_t output_desc,
                                void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlAddN(handle, inputs_desc, inputs, input_num, output_desc, output));
}

1249 1250 1251 1252 1253 1254 1255
/* static */ void MLUCnnl::Log(const ExecutionContext& ctx,
                               cnnlComputationPreference_t prefer,
                               cnnlLogBase_t log_base,
                               const cnnlTensorDescriptor_t input_desc,
                               const void* input,
                               const cnnlTensorDescriptor_t output_desc,
                               void* output) {
1256 1257
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

1258 1259
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlLog_v2(
      handle, prefer, log_base, input_desc, input, output_desc, output));
1260 1261
}

1262 1263 1264 1265 1266 1267 1268 1269 1270
/* static */ void MLUCnnl::Matmul(const ExecutionContext& ctx,
                                  const bool transpose_a,
                                  const bool transpose_b,
                                  const cnnlTensorDescriptor_t in0_desc,
                                  const void* in0,
                                  const cnnlTensorDescriptor_t in1_desc,
                                  const void* in1,
                                  const cnnlTensorDescriptor_t output_desc,
                                  void* output) {
1271 1272 1273 1274
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  float alpha = 1.0f;
  float beta = 0.0f;

1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlMatMul(handle,
                                        transpose_a,
                                        transpose_b,
                                        reinterpret_cast<void*>(&alpha),
                                        in0_desc,
                                        in0,
                                        in1_desc,
                                        in1,
                                        reinterpret_cast<void*>(&beta),
                                        output_desc,
                                        output));
1286 1287
}

1288 1289 1290 1291 1292 1293 1294 1295 1296
/* static */ void MLUCnnl::BatchMatmul(const ExecutionContext& ctx,
                                       const bool transpose_a,
                                       const bool transpose_b,
                                       const cnnlTensorDescriptor_t in0_desc,
                                       const void* in0,
                                       const cnnlTensorDescriptor_t in1_desc,
                                       const void* in1,
                                       const cnnlTensorDescriptor_t output_desc,
                                       void* output) {
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetBatchMatMulBCastWorkspaceSize(
      handle, in0_desc, in1_desc, output_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlBatchMatMulBCast(handle,
                                                  transpose_a,
                                                  transpose_b,
                                                  in0_desc,
                                                  in0,
                                                  in1_desc,
                                                  in1,
                                                  workspace_ptr,
                                                  workspace_size,
                                                  output_desc,
                                                  output));
1319 1320 1321
}

/* static */ void MLUCnnl::OpTensor(
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
    const ExecutionContext& ctx,
    const cnnlOpTensorDescriptor_t op_tensor_desc,
    const cnnlTensorDescriptor_t a_desc,
    const void* a,
    const cnnlTensorDescriptor_t b_desc,
    const void* b,
    const cnnlTensorDescriptor_t output_desc,
    void* output,
    const cnnlDataType_t dtype,
    const float alpha1_float,
    const float alpha2_float,
    const float beta_float) {
1334 1335 1336
  const int alpha1_int = static_cast<const int>(alpha1_float);
  const int alpha2_int = static_cast<const int>(alpha2_float);
  const int beta_int = static_cast<const int>(beta_float);
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353

  const void* alpha1_ptr = static_cast<const void*>(&alpha1_float);
  const void* alpha2_ptr = static_cast<const void*>(&alpha2_float);
  const void* beta_ptr = static_cast<const void*>(&beta_float);

  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  size_t workspace_size;

  bool is_dt_float = (dtype == CNNL_DTYPE_FLOAT || dtype == CNNL_DTYPE_HALF);

  //  if datatype is not float, we set alpha and beta to be int
  if (!is_dt_float) {
    alpha1_ptr = static_cast<const void*>(&alpha1_int);
    alpha2_ptr = static_cast<const void*>(&alpha2_int);
    beta_ptr = static_cast<const void*>(&beta_int);
  }

F
fwenguang 已提交
1354 1355
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetOpTensorWorkspaceSize(
      handle, a_desc, b_desc, output_desc, &workspace_size));
1356 1357 1358 1359 1360 1361

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlOpTensor(handle,
                                          op_tensor_desc,
                                          alpha1_ptr,
                                          a_desc,
                                          a,
                                          alpha2_ptr,
                                          b_desc,
                                          b,
                                          workspace_ptr,
                                          workspace_size,
                                          beta_ptr,
                                          output_desc,
                                          output));
1375 1376
}

Q
qipengh 已提交
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
/* static */ void MLUCnnl::MulAx(const ExecutionContext& ctx,
                                 const cnnlTensorDescriptor_t alpha_desc,
                                 const void* alpha,
                                 const cnnlTensorDescriptor_t output_desc,
                                 void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetAxWorkspaceSize(handle, alpha_desc, output_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

1393 1394 1395 1396 1397 1398 1399
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlAx_v2(handle,
                                       alpha_desc,
                                       alpha,
                                       output_desc,
                                       output,
                                       workspace_ptr,
                                       workspace_size));
Q
qipengh 已提交
1400 1401
}

1402
/* static */ void MLUCnnl::BiasAddGrad(
1403 1404 1405 1406 1407 1408
    const ExecutionContext& ctx,
    const int axis,
    const cnnlTensorDescriptor_t out_backprop_desc,
    const void* out_backprop,
    const cnnlTensorDescriptor_t output_desc,
    void* output) {
1409 1410 1411 1412 1413 1414 1415
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlBiasAddBackward(
      handle, out_backprop_desc, out_backprop, axis, output_desc, output));
}

/* static */ void MLUCnnl::RandomUniform(
1416 1417 1418 1419 1420 1421
    const ExecutionContext& ctx,
    const int num,
    const cnnlDataType_t data_type,
    const cnnlRandGenerator_t mlu_generator,
    void* mlu_state,
    void* output) {
1422 1423 1424
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlRandGenerateUniform(
Q
qipengh 已提交
1425 1426 1427 1428
      handle, mlu_generator, data_type, mlu_state, num, 0, 1, output));
}

/* static */ void MLUCnnl::FusedDropout(
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
    const ExecutionContext& ctx,
    const cnnlRandGenerator_t generator,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    const float p,
    void* state,
    const cnnlTensorDescriptor_t mask_desc,
    const void* mask,
    const cnnlTensorDescriptor_t output_desc,
    void* output) {
Q
qipengh 已提交
1439 1440
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlFusedDropout_v2(handle,
                                                 generator,
                                                 input_desc,
                                                 input,
                                                 p,
                                                 state,
                                                 mask_desc,
                                                 mask,
                                                 output_desc,
                                                 output));
1451 1452 1453
}

/* static */ void MLUCnnl::TopK(
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
    const ExecutionContext& ctx,
    const int k,
    const int dim,
    const bool largest,
    const bool sorted,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    const cnnlTensorDescriptor_t values_output_desc,
    void* values_out,
    const cnnlTensorDescriptor_t indices_output_desc,
1464 1465 1466
    void* indices_out) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlTopKTensor(handle,
                                            input_desc,
                                            input,
                                            k,
                                            dim,
                                            largest,
                                            sorted,
                                            values_output_desc,
                                            values_out,
                                            indices_output_desc,
                                            indices_out));
1478 1479 1480
}

/* static */ void MLUCnnl::StridedSlice(
1481 1482 1483 1484 1485 1486 1487 1488
    const ExecutionContext& ctx,
    const int begin[],
    const int end[],
    const int strides[],
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    const cnnlTensorDescriptor_t output_desc,
    void* output) {
1489 1490 1491 1492 1493 1494
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlStridedSlice(
      handle, input_desc, input, begin, end, strides, output_desc, output));
}

1495 1496
/* static */ void MLUCnnl::Split(const ExecutionContext& ctx,
                                 int split_num,
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
                                 int axis,
                                 const cnnlTensorDescriptor_t input_desc,
                                 const void* input_ptr,
                                 const cnnlTensorDescriptor_t output_descs[],
                                 void* output_ptrs[]) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetSplitWorkspaceSize(handle, split_num, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

1513 1514 1515 1516 1517 1518 1519 1520 1521
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSplit(handle,
                                       split_num,
                                       axis,
                                       input_desc,
                                       input_ptr,
                                       workspace_ptr,
                                       workspace_size,
                                       output_descs,
                                       output_ptrs));
1522 1523
}

1524 1525
/* static */ void MLUCnnl::Split(const MLUDeviceContext& dev_ctx,
                                 int split_num,
Z
zn 已提交
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
                                 int axis,
                                 const cnnlTensorDescriptor_t input_desc,
                                 const void* input_ptr,
                                 const cnnlTensorDescriptor_t output_descs[],
                                 void* output_ptrs[]) {
  cnnlHandle_t handle = dev_ctx.cnnl_handle();

  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetSplitWorkspaceSize(handle, split_num, &workspace_size));

  Tensor workspace(paddle::experimental::DataType::INT8);
  workspace.Resize(framework::DDim({static_cast<int64_t>(workspace_size)}));
  void* workspace_ptr = workspace.mutable_data(dev_ctx.GetPlace());

1541 1542 1543 1544 1545 1546 1547 1548 1549
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSplit(handle,
                                       split_num,
                                       axis,
                                       input_desc,
                                       input_ptr,
                                       workspace_ptr,
                                       workspace_size,
                                       output_descs,
                                       output_ptrs));
Z
zn 已提交
1550 1551
}

1552
/* static */ void MLUCnnl::GatherFunctor(
1553 1554 1555 1556 1557 1558 1559 1560 1561
    const ExecutionContext& ctx,
    const int axis,
    const int batch_dims,
    const cnnlTensorDescriptor_t params_desc,
    const void* params,
    const cnnlTensorDescriptor_t indices_desc,
    const void* indices,
    const cnnlTensorDescriptor_t output_desc,
    void* output) {
1562 1563
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

1564 1565 1566 1567 1568 1569 1570 1571 1572
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlBatchGatherV2(handle,
                                               axis,
                                               batch_dims,
                                               params_desc,
                                               params,
                                               indices_desc,
                                               indices,
                                               output_desc,
                                               output));
1573 1574
}

1575
/* static */ void MLUCnnl::ScatterRefFunctor(
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
    const ExecutionContext& ctx,
    const cnnlTensorDescriptor_t params_desc,
    const void* params,
    const cnnlTensorDescriptor_t updates_desc,
    const void* updates,
    const cnnlTensorDescriptor_t indices_desc,
    const void* indices,
    const cnnlScatterRefMode_t mode) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlScatterRef(handle,
                                            params_desc,
                                            params,
                                            indices_desc,
                                            indices,
                                            updates_desc,
                                            updates,
                                            0,
                                            mode));
1595 1596
}

1597
/* static */ void MLUCnnl::ScatterFunctor(
1598 1599 1600 1601 1602 1603 1604 1605 1606
    const ExecutionContext& ctx,
    const cnnlTensorDescriptor_t params_desc,
    void* params,
    const cnnlTensorDescriptor_t updates_desc,
    const void* updates,
    const cnnlTensorDescriptor_t indices_desc,
    const void* indices,
    const int dim,
    const cnnlScatterMode_t mode) {
1607 1608
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlScatter(handle,
                  dim,
                  params_desc,
                  params,
                  indices_desc,
                  indices,
                  updates_desc,
                  updates,
                  params_desc,
                  params, /* output_desc, output, same with params*/
                  mode));
1621 1622
}

1623
/* static */ void MLUCnnl::StridedSliceGrad(
1624 1625 1626 1627 1628 1629 1630 1631
    const ExecutionContext& ctx,
    const int begin[],
    const int end[],
    const int strides[],
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    const cnnlTensorDescriptor_t output_desc,
    void* output) {
1632 1633 1634 1635 1636 1637
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlStridedSliceBackward(
      handle, begin, end, strides, input_desc, input, output_desc, output));
}

1638 1639 1640 1641 1642 1643 1644 1645
/* static */ void MLUCnnl::Logic(const ExecutionContext& ctx,
                                 const cnnlLogicOp_t log_method,
                                 const cnnlTensorDescriptor_t input1_desc,
                                 const void* input1,
                                 const cnnlTensorDescriptor_t input2_desc,
                                 const void* input2,
                                 const cnnlTensorDescriptor_t output_desc,
                                 void* output) {
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size = 0;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetLogicOpWorkspaceSize(
      handle, input1_desc, input2_desc, output_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlLogicOp(handle,
                                         log_method,
                                         input1_desc,
                                         input1,
                                         input2_desc,
                                         input2,
                                         workspace_ptr,
                                         workspace_size,
                                         output_desc,
                                         output));
}

/* static */ void MLUCnnl::Select(const ExecutionContext& ctx,
                                  const cnnlTensorDescriptor_t condition_desc,
                                  const void* condition_ptr,
                                  const cnnlTensorDescriptor_t then_desc,
                                  const void* then_ptr,
                                  const cnnlTensorDescriptor_t else_desc,
                                  const void* else_ptr,
                                  const cnnlTensorDescriptor_t output_desc,
                                  void* output_ptr) {
1678 1679
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

1680 1681 1682 1683 1684 1685 1686 1687 1688
  size_t workspace_size = 0;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetSelectV2WorkspaceSize(
      handle, condition_desc, then_desc, else_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSelectV2(handle,
                                          condition_desc,
                                          condition_ptr,
                                          then_desc,
                                          then_ptr,
                                          else_desc,
                                          else_ptr,
                                          workspace_ptr,
                                          workspace_size,
                                          output_desc,
                                          output_ptr));
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
}

/*static */ void MLUCnnl::GatherNd(const ExecutionContext& ctx,
                                   const cnnlTensorDescriptor_t params_desc,
                                   const void* params,
                                   const cnnlTensorDescriptor_t indices_desc,
                                   const void* indices,
                                   const cnnlTensorDescriptor_t output_desc,
                                   void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGatherNd(
      handle, params_desc, params, indices_desc, indices, output_desc, output));
}

/* static */ void MLUCnnl::BatchToSpace(
1716 1717 1718 1719 1720
    const ExecutionContext& ctx,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    const cnnlTensorDescriptor_t output_desc,
    void* output,
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
    const cnnlSpaceBatchParam_t param) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetBatch2spaceWorkspaceSize(
      handle, input_desc, output_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

1733 1734 1735 1736 1737 1738 1739 1740
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlBatch2space(handle,
                                             input_desc,
                                             input,
                                             output_desc,
                                             output,
                                             param,
                                             workspace_ptr,
                                             workspace_size));
1741 1742 1743
}

/* static */ void MLUCnnl::BatchToSpaceNd(
1744 1745 1746 1747 1748 1749 1750 1751
    const ExecutionContext& ctx,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    cnnlSpaceBatchNdDescriptor_t param,
    void* extra_device_input,
    size_t extra_input_size,
    const cnnlTensorDescriptor_t output_desc,
    void* output) {
1752 1753
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

1754 1755 1756 1757 1758 1759 1760 1761
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlBatch2spaceNd_v2(handle,
                                                  input_desc,
                                                  input,
                                                  output_desc,
                                                  output,
                                                  param,
                                                  extra_device_input,
                                                  extra_input_size));
1762 1763 1764
}

/* static */ void MLUCnnl::SoftmaxForward(
1765 1766 1767 1768 1769 1770 1771 1772 1773
    const ExecutionContext& ctx,
    cnnlSoftmaxAlgorithm_t algorithm,
    cnnlSoftmaxMode_t mode,
    const void* alpha,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    const void* beta,
    const cnnlTensorDescriptor_t output_desc,
    void* output) {
1774 1775
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

1776 1777 1778 1779 1780 1781 1782 1783 1784
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSoftmaxForward(handle,
                                                algorithm,
                                                mode,
                                                alpha,
                                                input_desc,
                                                input,
                                                beta,
                                                output_desc,
                                                output));
1785 1786
}

1787
/* static */ void MLUCnnl::SoftmaxBackward(
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
    const ExecutionContext& ctx,
    cnnlSoftmaxAlgorithm_t algorithm,
    cnnlSoftmaxMode_t mode,
    const cnnlTensorDescriptor_t y_desc,
    const void* y,
    const cnnlTensorDescriptor_t diff_y_desc,
    const void* diff_y,
    const cnnlTensorDescriptor_t diff_x_desc,
    void* diff_x) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSoftmaxBackward(handle,
                                                 algorithm,
                                                 mode,
                                                 nullptr,
                                                 y_desc,
                                                 y,
                                                 diff_y_desc,
                                                 diff_y,
                                                 nullptr,
                                                 diff_x_desc,
                                                 diff_x));
1810 1811
}

1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
/* static */ void MLUCnnl::Softplus(const ExecutionContext& ctx,
                                    const cnnlTensorDescriptor_t features_desc,
                                    const void* features,
                                    const cnnlTensorDescriptor_t output_desc,
                                    void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  const int beta = 1;
  const int threshold = 20;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSoftplusForward(
      handle, features_desc, features, output_desc, output, beta, threshold));
}

/* static */ void MLUCnnl::SoftplusGrad(
1826 1827 1828 1829 1830 1831
    const ExecutionContext& ctx,
    const cnnlTensorDescriptor_t gradients_desc,
    const void* gradients,
    const cnnlTensorDescriptor_t features_desc,
    const void* features,
    const cnnlTensorDescriptor_t output_desc,
1832 1833 1834 1835 1836
    void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  int beta = 1;
  int threshold = 20;
1837 1838 1839 1840 1841 1842 1843 1844 1845
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSoftplusBackward(handle,
                                                  features_desc,
                                                  features,
                                                  gradients_desc,
                                                  gradients,
                                                  output_desc,
                                                  output,
                                                  beta,
                                                  threshold));
1846 1847 1848
}

/* static */ void MLUCnnl::PoolingForward(
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
    const ExecutionContext& ctx,
    cnnlPoolingMode_t pool_mode,
    int64_t output_h,
    int64_t output_w,
    const cnnlPoolingDescriptor_t pooling_desc,
    const void* alpha,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    const void* beta,
    const void* extra_input_ptr,
    const cnnlTensorDescriptor_t output_desc,
    void* output) {
1861 1862 1863 1864
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size = 0;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetPoolingWorkspaceSize(
1865
      handle, pool_mode, output_w, output_h, &workspace_size));
1866 1867 1868 1869 1870 1871

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlPoolingForward_v2(handle,
                                                   pooling_desc,
                                                   alpha,
                                                   input_desc,
                                                   input,
                                                   beta,
                                                   extra_input_ptr,
                                                   output_desc,
                                                   output,
                                                   workspace_ptr,
                                                   workspace_size));
1883 1884
}

1885
/* static */ void MLUCnnl::AdaptivePoolingForward(
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
    const ExecutionContext& ctx,
    cnnlPoolingMode_t pool_mode,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    const cnnlTensorDescriptor_t output_desc,
    void* output,
    const cnnlTensorDescriptor_t index_desc,
    void* index) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlAdaptivePoolingForward(handle,
                                                        input_desc,
                                                        input,
                                                        pool_mode,
                                                        output_desc,
                                                        output,
                                                        index_desc,
                                                        index));
}

/* static */ void MLUCnnl::Pool3D(const ExecutionContext& ctx,
                                  cnnlPoolingMode_t pool_mode,
                                  const std::vector<int64_t>& output_shape,
                                  const cnnlPoolingDescriptor_t pooling_desc,
                                  const void* alpha,
                                  const cnnlTensorDescriptor_t input_desc,
                                  const void* input,
                                  const void* beta,
                                  const cnnlTensorDescriptor_t output_desc,
                                  void* output) {
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size = 0;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetPoolingWorkspaceSize(
      handle, pool_mode, output_shape[2], output_shape[1], &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlPoolingForward(handle,
                                                pooling_desc,
                                                alpha,
                                                input_desc,
                                                input,
                                                beta,
                                                output_desc,
                                                output,
                                                workspace_ptr,
                                                workspace_size));
1937 1938 1939 1940
}

/* static */ void MLUCnnl::RsqrtGrad(const ExecutionContext& ctx,
                                     const cnnlTensorDescriptor_t data_desc,
1941 1942
                                     const void* y,
                                     const void* diff_y,
1943 1944 1945 1946 1947 1948 1949 1950 1951
                                     void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlRsqrtBackward(handle, data_desc, y, diff_y, output));
}

/* static */ void MLUCnnl::SqrtGrad(const ExecutionContext& ctx,
                                    const cnnlTensorDescriptor_t data_desc,
1952 1953
                                    const void* y,
                                    const void* diff_y,
1954 1955 1956 1957 1958 1959 1960 1961
                                    void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSqrtBackward(handle, data_desc, y, diff_y, output));
}

/* static */ void MLUCnnl::UnsortedSegmentSum(
1962 1963 1964 1965 1966 1967
    const ExecutionContext& ctx,
    const cnnlTensorDescriptor_t data_desc,
    const void* data,
    const cnnlTensorDescriptor_t ids_desc,
    const int* segment_ids,
    const cnnlTensorDescriptor_t output_desc,
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
    void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size = 0;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetUnsortedSegmentSumWorkspaceSize(
      handle, data_desc, output_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

1980 1981 1982 1983 1984 1985 1986 1987 1988
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlUnsortedSegmentSum(handle,
                                                    data_desc,
                                                    data,
                                                    ids_desc,
                                                    segment_ids,
                                                    workspace_ptr,
                                                    workspace_size,
                                                    output_desc,
                                                    output));
1989 1990 1991 1992
}

/* static */ void MLUCnnl::Pad(const ExecutionContext& ctx,
                               const cnnlTensorDescriptor_t input_desc,
1993 1994
                               const void* input,
                               const void* paddings,
1995 1996 1997 1998 1999
                               const void* padding_value,
                               const cnnlTensorDescriptor_t output_desc,
                               void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

2000 2001
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlPad(
      handle, input_desc, input, paddings, padding_value, output_desc, output));
2002 2003 2004 2005
}

/* static */ void MLUCnnl::OneHot(const ExecutionContext& ctx,
                                  const cnnlTensorDescriptor_t desc_indices,
2006 2007 2008 2009
                                  const void* indices,
                                  const int depth,
                                  const void* on_value,
                                  const void* off_value,
2010 2011 2012 2013 2014
                                  const int axis,
                                  cnnlDataType_t output_data_type,
                                  void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

2015 2016 2017 2018 2019 2020 2021 2022 2023
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlOneHot(handle,
                                        desc_indices,
                                        indices,
                                        depth,
                                        on_value,
                                        off_value,
                                        axis,
                                        output_data_type,
                                        output));
2024 2025 2026
}

/* static */ void MLUCnnl::ConvolutionForward(
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
    const ExecutionContext& ctx,
    cnnlConvolutionDescriptor_t conv_desc,
    const void* alpha,
    const void* beta,
    const cnnlTensorDescriptor_t bias_desc,
    const void* bias_ptr,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    const cnnlTensorDescriptor_t filtet_desc,
    const void* filter,
    const cnnlTensorDescriptor_t output_desc,
2038 2039 2040 2041 2042 2043
    void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  // cnnl: select best algorithm for convolution compution.
  cnnlConvolutionForwardAlgo_t algo;
  cnnlConvolutionFwdPreference_t preference = CNNL_CONVOLUTION_FWD_FASTEST;
2044 2045 2046 2047 2048 2049 2050
  cnnlGetConvolutionForwardAlgorithm(handle,
                                     conv_desc,
                                     input_desc,
                                     filtet_desc,
                                     output_desc,
                                     preference,
                                     &algo);
2051 2052 2053

  // get workspace size
  size_t workspace_size = 0;
2054 2055 2056 2057 2058 2059 2060 2061 2062
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetConvolutionForwardWorkspaceSize(handle,
                                             input_desc,
                                             filtet_desc,
                                             output_desc,
                                             bias_desc,
                                             conv_desc,
                                             algo,
                                             &workspace_size));
2063 2064 2065 2066 2067 2068

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlConvolutionForward(handle,
                                                    conv_desc,
                                                    algo,
                                                    alpha,
                                                    input_desc,
                                                    input,
                                                    filtet_desc,
                                                    filter,
                                                    bias_desc,
                                                    bias_ptr,
                                                    workspace_ptr,
                                                    workspace_size,
                                                    beta,
                                                    output_desc,
                                                    output));
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
}

/* static */ void MLUCnnl::Tile(const ExecutionContext& ctx,
                                const cnnlTensorDescriptor_t input_desc,
                                const void* input,
                                const cnnlTensorDescriptor_t output_desc,
                                void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlTile(handle, input_desc, input, output_desc, output));
}

/* static */ void MLUCnnl::SoftmaxCrossEntropyWithLogits(
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
    const ExecutionContext& ctx,
    cnnlSoftmaxMode_t mode,
    cnnlComputationPreference_t prefer,
    const cnnlTensorDescriptor_t input_desc,
    const void* logits_in,
    const cnnlTensorDescriptor_t label_desc,
    const void* labels_in,
    const cnnlTensorDescriptor_t loss_out_desc,
    void* loss_out,
    const cnnlTensorDescriptor_t back_out_desc,
2108 2109 2110
    void* back_out) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSoftmaxCrossEntropyWithLogits_v2(handle,
                                                                  mode,
                                                                  prefer,
                                                                  input_desc,
                                                                  logits_in,
                                                                  label_desc,
                                                                  labels_in,
                                                                  loss_out_desc,
                                                                  loss_out,
                                                                  back_out_desc,
                                                                  back_out));
2122 2123
}

2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
/* static */ void MLUCnnl::Reduce(const ExecutionContext& ctx,
                                  const bool need_workspace,
                                  const cnnlReduceDescriptor_t reduction_desc,
                                  const void* alpha,
                                  const cnnlTensorDescriptor_t input_desc,
                                  const void* input,
                                  const size_t indices_size,
                                  void* indices,
                                  const void* beta,
                                  const cnnlTensorDescriptor_t output_desc,
                                  void* output) {
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size = 0;
  void* workspace_ptr = nullptr;
  Tensor workspace;
  if (need_workspace) {
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetReduceOpWorkspaceSize(
        handle, input_desc, output_desc, reduction_desc, &workspace_size));

    auto& dev_ctx = GetDevCtxFromCTX(ctx);
    workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
        {static_cast<int64_t>(workspace_size)}, dev_ctx);

    workspace_ptr = workspace.mutable_data(ctx.GetPlace());
  }

2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlReduce(handle,
                                        reduction_desc,
                                        workspace_ptr,
                                        workspace_size,
                                        alpha,
                                        input_desc,
                                        input,
                                        indices_size,
                                        indices,
                                        beta,
                                        output_desc,
                                        output));
2163 2164
}

2165 2166 2167 2168 2169 2170 2171 2172
/* static */ void MLUCnnl::FloorDiv(const ExecutionContext& ctx,
                                    cnnlComputationPreference_t prefer,
                                    const cnnlTensorDescriptor_t input1_desc,
                                    const void* input1,
                                    const cnnlTensorDescriptor_t input2_desc,
                                    const void* input2,
                                    const cnnlTensorDescriptor_t output_desc,
                                    void* output) {
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetFloorDivWorkspaceSize(
      handle, input1_desc, input2_desc, output_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlFloorDiv_v2(handle,
                                             prefer,
                                             input1_desc,
                                             input1,
                                             input2_desc,
                                             input2,
                                             output_desc,
                                             output,
                                             workspace_ptr,
                                             workspace_size));
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
}

/* static */ void MLUCnnl::FloorMod(const ExecutionContext& ctx,
                                    const cnnlTensorDescriptor_t input1_desc,
                                    const void* input1,
                                    const cnnlTensorDescriptor_t input2_desc,
                                    const void* input2,
                                    const cnnlTensorDescriptor_t output_desc,
                                    void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetFloorModWorkspaceSize(
      handle, input1_desc, input2_desc, output_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

2212 2213 2214 2215 2216 2217 2218 2219 2220
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlFloorMod(handle,
                                          input1_desc,
                                          input1,
                                          input2_desc,
                                          input2,
                                          output_desc,
                                          output,
                                          workspace_ptr,
                                          workspace_size));
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
}

/* static */ void MLUCnnl::Maximum(const ExecutionContext& ctx,
                                   const cnnlTensorDescriptor_t input1_desc,
                                   const void* input1,
                                   const cnnlTensorDescriptor_t input2_desc,
                                   const void* input2,
                                   const cnnlTensorDescriptor_t output_desc,
                                   void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetMaximumWorkspaceSize(handle, output_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

2240 2241 2242 2243 2244 2245 2246 2247 2248
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlMaximum(handle,
                                         input1_desc,
                                         input1,
                                         input2_desc,
                                         input2,
                                         output_desc,
                                         output,
                                         workspace_ptr,
                                         workspace_size));
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
}

/* static */ void MLUCnnl::Minimum(const ExecutionContext& ctx,
                                   const cnnlTensorDescriptor_t input1_desc,
                                   const void* input1,
                                   const cnnlTensorDescriptor_t input2_desc,
                                   const void* input2,
                                   const cnnlTensorDescriptor_t output_desc,
                                   void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetMinimumWorkspaceSize(handle, output_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

2268 2269 2270 2271 2272 2273 2274 2275 2276
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlMinimum(handle,
                                         input1_desc,
                                         input1,
                                         input2_desc,
                                         input2,
                                         output_desc,
                                         output,
                                         workspace_ptr,
                                         workspace_size));
2277 2278
}

2279 2280 2281 2282 2283 2284 2285 2286
/* static */ void MLUCnnl::PowR(const ExecutionContext& ctx,
                                cnnlComputationPreference_t prefer,
                                const cnnlTensorDescriptor_t input1_desc,
                                const void* input1,
                                const cnnlTensorDescriptor_t input2_desc,
                                const void* input2,
                                const cnnlTensorDescriptor_t output_desc,
                                void* output) {
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetPowRWorkspaceSize(
      handle, input1_desc, input2_desc, output_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlPowR_v2(handle,
                                         prefer,
                                         input1_desc,
                                         input1,
                                         input2_desc,
                                         input2,
                                         workspace_ptr,
                                         workspace_size,
                                         output_desc,
                                         output));
2307 2308
}

2309 2310 2311 2312 2313 2314 2315 2316
/* static */ void MLUCnnl::DivNoNan(const ExecutionContext& ctx,
                                    cnnlComputationPreference_t prefer,
                                    const cnnlTensorDescriptor_t input1_desc,
                                    const void* input1,
                                    const cnnlTensorDescriptor_t input2_desc,
                                    const void* input2,
                                    const cnnlTensorDescriptor_t output_desc,
                                    void* output) {
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetDivNoNanWorkspaceSize(
      handle, input1_desc, input2_desc, output_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlDivNoNan_v2(handle,
                                             prefer,
                                             input1_desc,
                                             input1,
                                             input2_desc,
                                             input2,
                                             workspace_ptr,
                                             workspace_size,
                                             output_desc,
                                             output));
2337 2338 2339
}

/* static */ void MLUCnnl::SquaredDifference(
2340 2341 2342 2343 2344 2345
    const ExecutionContext& ctx,
    const cnnlTensorDescriptor_t input1_desc,
    const void* input1,
    const cnnlTensorDescriptor_t input2_desc,
    const void* input2,
    const cnnlTensorDescriptor_t output_desc,
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
    void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetSquaredDifferenceWorkspaceSize(
      handle, input1_desc, input2_desc, output_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

2357 2358 2359 2360 2361 2362 2363 2364 2365
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSquaredDifference(handle,
                                                   input1_desc,
                                                   input1,
                                                   input2_desc,
                                                   input2,
                                                   output_desc,
                                                   output,
                                                   workspace_ptr,
                                                   workspace_size));
2366 2367 2368 2369
}

/* static */ void MLUCnnl::L2Loss(const ExecutionContext& ctx,
                                  const cnnlTensorDescriptor_t input_desc,
2370 2371
                                  const void* input,
                                  void* output) {
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlL2Loss(handle, input_desc, input, output));
}

/* static */ void MLUCnnl::Abs(const ExecutionContext& ctx,
                               const cnnlTensorDescriptor_t input_desc,
                               const void* input,
                               const cnnlTensorDescriptor_t output_desc,
                               void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlAbs(handle, input_desc, input, output_desc, output));
}

/* static */ void MLUCnnl::Neg(const ExecutionContext& ctx,
                               const cnnlTensorDescriptor_t input_desc,
                               const void* input,
                               const cnnlTensorDescriptor_t output_desc,
                               void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlNegTensor(handle, input_desc, input, output_desc, output));
}

/* static */ void MLUCnnl::Floor(const ExecutionContext& ctx,
                                 const cnnlTensorDescriptor_t input_desc,
                                 const void* input,
                                 const cnnlTensorDescriptor_t output_desc,
                                 void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlFloor(handle, input_desc, input, output_desc, output));
}

/* static */ void MLUCnnl::Ceil(const ExecutionContext& ctx,
                                const cnnlTensorDescriptor_t input_desc,
                                const void* input,
                                const cnnlTensorDescriptor_t output_desc,
                                void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlCeil(handle, input_desc, input, output_desc, output));
}

/* static */ void MLUCnnl::IsNan(const ExecutionContext& ctx,
                                 const cnnlTensorDescriptor_t input_desc,
                                 const void* input,
                                 const cnnlTensorDescriptor_t output_desc,
                                 void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlIsNan(handle, input_desc, input, output_desc, output));
}

/* static */ void MLUCnnl::Square(const ExecutionContext& ctx,
                                  const cnnlTensorDescriptor_t input_desc,
                                  const void* input,
                                  const cnnlTensorDescriptor_t output_desc,
                                  void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSquare(handle, input_desc, input, output_desc, output));
}

/* static */ void MLUCnnl::Sqrt(const ExecutionContext& ctx,
                                cnnlComputationPreference_t prefer,
                                const cnnlTensorDescriptor_t input_desc,
                                const void* input,
                                const cnnlTensorDescriptor_t output_desc,
                                void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSqrt_v2(handle, prefer, input_desc, input, output_desc, output));
}

/* static */ void MLUCnnl::Rsqrt(const ExecutionContext& ctx,
                                 cnnlComputationPreference_t prefer,
                                 const cnnlTensorDescriptor_t input_desc,
                                 const void* input,
                                 const cnnlTensorDescriptor_t output_desc,
                                 void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlRsqrt_v2(handle, prefer, input_desc, input, output_desc, output));
}

/* static */ void MLUCnnl::Cos(const ExecutionContext& ctx,
                               cnnlComputationPreference_t prefer,
                               const cnnlTensorDescriptor_t input_desc,
                               const void* input,
                               const cnnlTensorDescriptor_t output_desc,
                               void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlCos_v2(handle, prefer, input_desc, input, output_desc, output));
}

/* static */ void MLUCnnl::Sin(const ExecutionContext& ctx,
                               cnnlComputationPreference_t prefer,
                               const cnnlTensorDescriptor_t input_desc,
                               const void* input,
                               const cnnlTensorDescriptor_t output_desc,
                               void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSin_v2(handle, prefer, input_desc, input, output_desc, output));
}

/* static */ void MLUCnnl::TrigonForward(
2491 2492 2493 2494 2495 2496
    const ExecutionContext& ctx,
    const cnnlTrigonDescriptor_t trigon_desc,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    const cnnlTensorDescriptor_t output_desc,
    void* output) {
2497 2498
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

2499 2500
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlTrigonForward(
      handle, trigon_desc, input_desc, input, output_desc, output));
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
}

/* static */ void MLUCnnl::Exp(const ExecutionContext& ctx,
                               cnnlComputationPreference_t prefer,
                               const cnnlTensorDescriptor_t input_desc,
                               const void* input,
                               const cnnlTensorDescriptor_t output_desc,
                               void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlExp_v2(handle, prefer, input_desc, input, output_desc, output));
}

/* static */ void MLUCnnl::Sign(const ExecutionContext& ctx,
                                const cnnlTensorDescriptor_t input_desc,
                                const void* input,
                                const cnnlTensorDescriptor_t output_desc,
                                void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSign(handle, input_desc, input, output_desc, output));
}

/* static */ void MLUCnnl::IsFinite(const ExecutionContext& ctx,
                                    const cnnlTensorDescriptor_t input_desc,
                                    const void* input,
                                    const cnnlTensorDescriptor_t output_desc,
                                    void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlIsFinite(handle, input_desc, input, output_desc, output));
}

/* static */ void MLUCnnl::IsNanInf(const ExecutionContext& ctx,
                                    const cnnlTensorDescriptor_t input_desc,
2539 2540
                                    const void* input,
                                    void* output) {
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  // TODO(CTR-3849): output type should be void*, but now bool*.
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlNanInf(handle, input_desc, input, reinterpret_cast<bool*>(output)));
}

/* static */ void MLUCnnl::Erf(const ExecutionContext& ctx,
                               cnnlComputationPreference_t prefer,
                               const cnnlTensorDescriptor_t input_desc,
                               const void* input,
                               const cnnlTensorDescriptor_t output_desc,
                               void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlErf_v2(handle, prefer, input_desc, input, output_desc, output));
}

/* static */ void MLUCnnl::Log1p(const ExecutionContext& ctx,
                                 cnnlComputationPreference_t prefer,
                                 const cnnlTensorDescriptor_t input_desc,
                                 const void* input,
                                 const cnnlTensorDescriptor_t output_desc,
                                 void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlLog1p(handle, prefer, input_desc, input, output_desc, output));
}

/* static */ void MLUCnnl::LogicalNot(const ExecutionContext& ctx,
                                      const cnnlTensorDescriptor_t input_desc,
                                      const void* input,
                                      const cnnlTensorDescriptor_t output_desc,
                                      void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlLogicOp(handle,
                                         CNNL_LOGIC_OP_NOT,
                                         input_desc,
                                         input,
                                         input_desc,
                                         input,
                                         nullptr,
                                         0,
                                         output_desc,
                                         output));
2589 2590 2591
}

/* static */ void MLUCnnl::DynamicStitch(
2592 2593 2594 2595 2596 2597 2598 2599 2600
    const ExecutionContext& ctx,
    const cnnlTensorDescriptor_t* indices_desc,
    const int** indices,
    const cnnlTensorDescriptor_t* data_desc,
    const void** data,
    const int size,
    int* indices_dims,
    const cnnlTensorDescriptor_t output_desc,
    void* output) {
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetDynamicStitchWorkspaceSize(handle, size, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlDynamicStitch(handle,
                                               indices_desc,
                                               indices,
                                               data_desc,
                                               data,
                                               size,
                                               indices_dims,
                                               workspace_ptr,
                                               workspace_size,
                                               output_desc,
                                               output));
2622 2623 2624
}

/* static */ void MLUCnnl::CropAndResize(
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
    const ExecutionContext& ctx,
    const std::string method_name,
    const float extrapolation_value,
    const cnnlTensorDescriptor_t image_desc,
    const void* image,
    const cnnlTensorDescriptor_t boxes_desc,
    const void* boxes,
    const cnnlTensorDescriptor_t box_index_desc,
    const void* box_index,
    const cnnlTensorDescriptor_t output_desc,
2635 2636 2637 2638 2639 2640 2641 2642
    void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  cnnlCropAndResizeMode_t mode = CNNL_CROP_AND_RESIZE_BILINEAR;
  if (method_name == "nearest") {
    mode = CNNL_CROP_AND_RESIZE_NEAREST;
  }

2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlCropAndResize(handle,
                                               image_desc,
                                               image,
                                               boxes_desc,
                                               boxes,
                                               box_index_desc,
                                               box_index,
                                               mode,
                                               extrapolation_value,
                                               output_desc,
                                               output));
2654 2655 2656
}

/* static */ void MLUCnnl::CropAndResizeBackwardImage(
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
    const ExecutionContext& ctx,
    const std::string method_name,
    const cnnlTensorDescriptor_t grads_desc,
    const void* grads,
    const cnnlTensorDescriptor_t boxes_desc,
    const void* boxes,
    const cnnlTensorDescriptor_t box_idx_desc,
    const void* box_idx,
    const cnnlTensorDescriptor_t grads_image_desc,
    void* grads_image) {
2667 2668 2669 2670 2671 2672 2673
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  cnnlCropAndResizeMode_t mode = CNNL_CROP_AND_RESIZE_BILINEAR;
  if (method_name == "nearest") {
    mode = CNNL_CROP_AND_RESIZE_NEAREST;
  }

2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlCropAndResizeBackwardImage(handle,
                                                            grads_desc,
                                                            grads,
                                                            boxes_desc,
                                                            boxes,
                                                            box_idx_desc,
                                                            box_idx,
                                                            mode,
                                                            grads_image_desc,
                                                            grads_image));
2684 2685 2686
}

/* static */ void MLUCnnl::CropAndResizeBackwardBoxes(
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
    const ExecutionContext& ctx,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    const cnnlTensorDescriptor_t image_desc,
    const void* image,
    const cnnlTensorDescriptor_t boxes_desc,
    const void* boxes,
    const cnnlTensorDescriptor_t box_idx_desc,
    const void* box_idx,
    const cnnlTensorDescriptor_t output_desc,
2697 2698 2699 2700
    void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  cnnlCropAndResizeMode_t mode = CNNL_CROP_AND_RESIZE_BILINEAR;

2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlCropAndResizeBackwardBoxes(handle,
                                                            input_desc,
                                                            input,
                                                            image_desc,
                                                            image,
                                                            boxes_desc,
                                                            boxes,
                                                            box_idx_desc,
                                                            box_idx,
                                                            output_desc,
                                                            output,
                                                            mode));
}

/* static */ void MLUCnnl::Interp(const ExecutionContext& ctx,
                                  const cnnlInterpMode_t mode,
                                  const bool align_corners,
                                  const bool half_pixel_centers,
                                  const cnnlTensorDescriptor_t input_desc,
                                  const void* input,
                                  const cnnlTensorDescriptor_t output_desc,
                                  void* output) {
2723 2724
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlInterp_v2(handle,
                                           align_corners,
                                           half_pixel_centers,
                                           mode,
                                           NULL,
                                           true,
                                           input_desc,
                                           input,
                                           output_desc,
                                           output));
2735 2736 2737
}

/* static */ void MLUCnnl::InterpBackward(
2738 2739 2740 2741 2742 2743 2744 2745
    const ExecutionContext& ctx,
    const cnnlInterpBackwardMode_t mode,
    const bool align_corners,
    const bool half_pixel_centers,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    const cnnlTensorDescriptor_t output_desc,
    void* output) {
2746 2747
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlInterpBackward_v2(handle,
                                                   align_corners,
                                                   half_pixel_centers,
                                                   mode,
                                                   NULL,
                                                   true,
                                                   input_desc,
                                                   input,
                                                   output_desc,
                                                   output));
2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
}

/* static */ void MLUCnnl::Cast(const ExecutionContext& ctx,
                                cnnlCastDataType_t cast_type,
                                const cnnlTensorDescriptor_t input_desc,
                                const void* input,
                                const cnnlTensorDescriptor_t output_desc,
                                void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

2768 2769
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlCastDataType(
      handle, input_desc, input, cast_type, output_desc, output));
2770 2771
}

2772 2773
/*static*/ void MLUCnnl::Clip(const ExecutionContext& ctx,
                              const cnnlTensorDescriptor_t x_desc,
2774 2775 2776
                              const void* x,
                              const void* min,
                              const void* max,
2777 2778 2779 2780 2781 2782
                              void* y) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlClip(handle, x_desc, x, min, max, y));
}

/*static*/ void MLUCnnl::HardtanhBackward(
2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
    const ExecutionContext& ctx,
    const cnnlTensorDescriptor_t x_desc,
    const void* x,
    const cnnlTensorDescriptor_t diff_y_desc,
    const void* diff_y,
    const float max_val,
    const float min_val,
    const cnnlTensorDescriptor_t diff_x_desc,
    void* diff_x) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlHardtanhBackward(handle,
                                                  x_desc,
                                                  x,
                                                  diff_y_desc,
                                                  diff_y,
                                                  max_val,
                                                  min_val,
                                                  diff_x_desc,
                                                  diff_x));
2802 2803
}

2804
/* static */ void MLUCnnl::PoolingBackward(
2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
    const ExecutionContext& ctx,
    const cnnlPoolingDescriptor_t pooling_desc,
    const void* alpha,
    const cnnlTensorDescriptor_t y_desc,
    const void* y,
    const cnnlTensorDescriptor_t diff_y_desc,
    const void* diff_y,
    const cnnlTensorDescriptor_t x_desc,
    const void* x,
    const void* beta,
    const cnnlTensorDescriptor_t diff_x_desc,
    void* diff_x) {
2817 2818
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlPoolingBackward(handle,
                          const_cast<cnnlPoolingDescriptor_t>(pooling_desc),
                          alpha,
                          y_desc,
                          y,
                          diff_y_desc,
                          diff_y,
                          x_desc,
                          x,
                          beta,
                          diff_x_desc,
                          diff_x));
2832 2833
}

2834
/* static */ void MLUCnnl::AdaptivePoolingBackward(
2835 2836 2837 2838 2839 2840 2841 2842
    const ExecutionContext& ctx,
    const cnnlPoolingMode_t pool_mode,
    const cnnlTensorDescriptor_t y_desc,
    const void* y,
    const cnnlTensorDescriptor_t index_desc,
    const void* index,
    const cnnlTensorDescriptor_t diff_x_desc,
    void* diff_x) {
2843 2844 2845 2846 2847 2848
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlAdaptivePoolingBackward(
      handle, y_desc, y, index_desc, index, pool_mode, diff_x_desc, diff_x));
}

2849
/* static */ void MLUCnnl::NonMaxSuppression(
2850 2851 2852 2853 2854 2855 2856 2857 2858
    const ExecutionContext& ctx,
    const cnnlNmsDescriptor_t nms_desc,
    const cnnlTensorDescriptor_t boxes_desc,
    const void* boxes,
    const cnnlTensorDescriptor_t confidence_desc,
    const void* confidence,
    const cnnlTensorDescriptor_t output_desc,
    void* output,
    void* output_size) {
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetNmsWorkspaceSize_v2(handle, confidence_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlNms_v2(handle,
                                        nms_desc,
                                        boxes_desc,
                                        boxes,
                                        confidence_desc,
                                        confidence,
                                        workspace_ptr,
                                        workspace_size,
                                        output_desc,
                                        output,
                                        output_size));
2881 2882 2883
}

/* static */ void MLUCnnl::PoolingIndex(
2884 2885 2886 2887 2888 2889
    const ExecutionContext& ctx,
    const cnnlPoolingDescriptor_t pooling_desc,
    const cnnlTensorDescriptor_t x_desc,
    const void* x,
    const cnnlTensorDescriptor_t y_desc,
    void* y) {
2890 2891
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

2892 2893 2894 2895 2896 2897 2898
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlPoolingIndex(handle,
                       const_cast<cnnlPoolingDescriptor_t>(pooling_desc),
                       x_desc,
                       x,
                       y_desc,
                       y));
2899 2900 2901
}

/* static */ void MLUCnnl::SpaceToBatch(
2902 2903 2904 2905 2906
    const ExecutionContext& ctx,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    const cnnlTensorDescriptor_t output_desc,
    void* output,
2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
    const int64_t block_shape[]) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetSpace2batchWorkspaceSize(
      handle, input_desc, output_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

  cnnlSpaceBatchParam_t param = {static_cast<uint32_t>(block_shape[0]),
                                 static_cast<uint32_t>(block_shape[1])};
2921 2922 2923 2924 2925 2926 2927 2928
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSpace2batch(handle,
                                             input_desc,
                                             input,
                                             output_desc,
                                             output,
                                             param,
                                             workspace_ptr,
                                             workspace_size));
2929 2930 2931
}

/* static */ void MLUCnnl::SpaceToBatchNd(
2932 2933 2934 2935 2936 2937 2938 2939
    const ExecutionContext& ctx,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    cnnlSpaceBatchNdDescriptor_t param,
    void* extra_device_input,
    size_t extra_host_input,
    const cnnlTensorDescriptor_t output_desc,
    void* output) {
2940 2941
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

2942 2943 2944 2945 2946 2947 2948 2949
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSpace2batchNd_v2(handle,
                                                  input_desc,
                                                  input,
                                                  output_desc,
                                                  output,
                                                  param,
                                                  extra_device_input,
                                                  extra_host_input));
2950 2951 2952
}

/* static */ void MLUCnnl::FusedBatchNorm(
2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
    const ExecutionContext& ctx,
    const bool is_training,
    const cnnlTensorDescriptor_t x_desc,
    const void* x,
    const cnnlTensorDescriptor_t scale_desc,
    const void* scale,
    const void* offset,
    const void* running_mean_input,
    const void* running_variance_input,
    float epsilon,
    float momentum,
    const cnnlTensorDescriptor_t output_desc,
    void* output,
    void* running_mean_output,
    void* running_var_output,
    void* saved_batch_mean_output,
    void* saved_batch_var_output) {
2970 2971 2972 2973
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  if (is_training) {
    /*
2974
     *  In Paddle, running_mean_output = momentum * runnning_mean_input +
2975 2976 2977 2978
     *  (1 - momentum) * batch_mean. However, In CNNL,
     *  running_mean_output = (1 - momentum) * running_mean_input +
     *  momentum * batch_mean. So we pass (1.0 - momentum) to momentum param.
     */
2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
    PADDLE_ENFORCE_MLU_SUCCESS(
        cnnlBatchNormForwardTraining(handle,
                                     NULL,
                                     NULL,
                                     x_desc,
                                     x,
                                     scale_desc,
                                     scale,
                                     offset,
                                     running_mean_output,
                                     running_var_output,
                                     epsilon,
                                     1.0 - momentum,
                                     output_desc,
                                     output,
                                     saved_batch_mean_output,
                                     saved_batch_var_output));
2996
  } else {
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
    PADDLE_ENFORCE_MLU_SUCCESS(
        cnnlBatchNormForwardInference(handle,
                                      NULL,
                                      NULL,
                                      x_desc,
                                      x,
                                      scale_desc,
                                      scale,
                                      offset,
                                      running_mean_input,
                                      running_variance_input,
                                      epsilon,
                                      output_desc,
                                      output));
3011 3012 3013 3014
  }
}

/* static */ void MLUCnnl::FusedBatchNormGrad(
3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
    const ExecutionContext& ctx,
    const bool is_training,
    const cnnlTensorDescriptor_t y_backprop_desc,
    const void* y_backprop,
    const cnnlTensorDescriptor_t x_desc,
    const void* x,
    const cnnlTensorDescriptor_t scale_desc,
    const void* scale,
    const void* saved_mean,
    const void* saved_var,
    float epsilon,
    const cnnlTensorDescriptor_t x_backprop_desc,
    void* x_backprop,
    void* scale_backprop,
    void* offset_backprop) {
3030 3031 3032
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  if (is_training) {
3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlBatchNormBackward(handle,
                                                     NULL,
                                                     NULL,
                                                     NULL,
                                                     NULL,
                                                     x_desc,
                                                     x,
                                                     y_backprop_desc,
                                                     y_backprop,
                                                     scale_desc,
                                                     scale,
                                                     saved_mean,
                                                     saved_var,
                                                     epsilon,
                                                     x_backprop_desc,
                                                     x_backprop,
                                                     scale_backprop,
                                                     offset_backprop));
3051
  } else {
3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlFrozenBatchNormBackward(handle,
                                                           x_desc,
                                                           x,
                                                           y_backprop_desc,
                                                           y_backprop,
                                                           scale_desc,
                                                           scale,
                                                           saved_mean,
                                                           saved_var,
                                                           epsilon,
                                                           x_backprop_desc,
                                                           x_backprop,
                                                           scale_backprop,
                                                           offset_backprop));
3066 3067 3068
  }
}

3069
/* static */ void MLUCnnl::LayerNormForward(
3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
    const ExecutionContext& ctx,
    int axis,
    const cnnlTensorDescriptor_t x_desc,
    const void* x,
    const cnnlTensorDescriptor_t weight_bias_desc,
    const void* weight,
    const void* bias,
    float eps,
    const cnnlTensorDescriptor_t y_desc,
    void* y,
    const cnnlTensorDescriptor_t mean_rstd_desc,
    void* saved_mean,
3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
    void* saved_rstd) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetLayerNormOpWorkspaceSize(handle, axis, x_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlLayerNormForward(handle,
                                                  x_desc,
                                                  x,
                                                  axis,
                                                  weight_bias_desc,
                                                  weight,
                                                  bias,
                                                  eps,
                                                  workspace_ptr,
                                                  workspace_size,
                                                  y_desc,
                                                  y,
                                                  mean_rstd_desc,
                                                  saved_mean,
                                                  saved_rstd));
3109 3110 3111
}

/* static */ void MLUCnnl::LayerNormBackward(
3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
    const ExecutionContext& ctx,
    int axis,
    const cnnlTensorDescriptor_t x_desc,
    const void* x,
    const cnnlTensorDescriptor_t diff_z_desc,
    const void* diff_z,
    const cnnlTensorDescriptor_t weight_bias_desc,
    const void* weight,
    const cnnlTensorDescriptor_t mean_rstd_desc,
    const void* saved_mean,
    const void* saved_rstd,
    const cnnlTensorDescriptor_t diff_x_desc,
    void* diff_x,
    void* diff_weight,
    void* diff_bias) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlLayerNormBackward(handle,
                                                   x_desc,
                                                   x,
                                                   axis,
                                                   diff_z_desc,
                                                   diff_z,
                                                   weight_bias_desc,
                                                   weight,
                                                   mean_rstd_desc,
                                                   saved_mean,
                                                   saved_rstd,
                                                   diff_x_desc,
                                                   diff_x,
                                                   diff_weight,
                                                   diff_bias));
3144 3145
}

3146
/* static */ void MLUCnnl::QuantizeParam(
3147 3148 3149 3150 3151 3152 3153 3154
    const ExecutionContext& ctx,
    const cnnlQuantizeMode_t mode,
    const int bitwidth,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    void* position,
    void* scale,
    void* offset) {
3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetQuantizeParamWorkspaceSize(handle, input_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlQuantizeParam(handle,
                                               mode,
                                               input_desc,
                                               input,
                                               bitwidth,
                                               workspace_ptr,
                                               workspace_size,
                                               position,
                                               scale,
                                               offset));
}

/* static */ void MLUCnnl::Conv2D(const ExecutionContext& ctx,
                                  const cnnlConvolutionDescriptor_t conv_desc,
                                  const cnnlDataType_t tensor_dtype,
                                  const cnnlDataType_t dt_onchip,
                                  const void* input_position,
                                  const void* input_scale,
                                  const void* input_offset,
                                  const void* filter_position,
                                  const void* filter_scale,
                                  const void* filter_offset,
                                  const cnnlTensorDescriptor_t input_desc,
                                  const void* input,
                                  const cnnlTensorDescriptor_t filter_desc,
                                  const void* filter,
                                  const cnnlTensorDescriptor_t bias_desc,
                                  const void* bias,
                                  const cnnlTensorDescriptor_t output_desc,
                                  void* output) {
3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSetTensorDescriptorOnchipDataType(input_desc, dt_onchip));
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSetTensorDescriptorOnchipDataType(filter_desc, dt_onchip));
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSetTensorDescriptorOnchipDataType(output_desc, tensor_dtype));

  cnnlConvolutionForwardAlgo_t algo;
  const cnnlConvolutionFwdPreference_t preference =
      CNNL_CONVOLUTION_FWD_FASTEST;
3208 3209 3210 3211 3212 3213 3214
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetConvolutionForwardAlgorithm(handle,
                                                                conv_desc,
                                                                input_desc,
                                                                filter_desc,
                                                                output_desc,
                                                                preference,
                                                                &algo));
3215 3216

  size_t workspace_size = 0;
3217 3218 3219 3220 3221 3222 3223 3224 3225
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetConvolutionForwardWorkspaceSize(handle,
                                             input_desc,
                                             filter_desc,
                                             output_desc,
                                             bias_desc,
                                             conv_desc,
                                             algo,
                                             &workspace_size));
3226 3227 3228 3229 3230 3231

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlQuantizeConvolutionForward(handle,
                                                            conv_desc,
                                                            algo,
                                                            nullptr /*alpha*/,
                                                            input_desc,
                                                            input,
                                                            input_position,
                                                            input_scale,
                                                            input_offset,
                                                            filter_desc,
                                                            filter,
                                                            filter_position,
                                                            filter_scale,
                                                            filter_offset,
                                                            bias_desc,
                                                            bias,
                                                            workspace_ptr,
                                                            workspace_size,
                                                            nullptr /*beta*/,
                                                            output_desc,
                                                            output));
3253 3254 3255
}

/* static */ void MLUCnnl::FusedConvBNQuantify(
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
    const ExecutionContext& ctx,
    cnnlConvolutionDescriptor_t conv_desc,
    const void* epsilon_ptr,
    const int fused_ops_number,
    const cnnlDataType_t tensor_dtype,
    const int input_position,
    const float input_scale,
    const int filter_position,
    const float filter_scale,
    const cnnlTensorDescriptor_t scale_desc,
    const void* scale_ptr,
    const cnnlTensorDescriptor_t offset_desc,
    const void* offset_ptr,
    const cnnlTensorDescriptor_t mean_desc,
    const void* mean_ptr,
    const cnnlTensorDescriptor_t variance_desc,
    const void* variance_ptr,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    const cnnlTensorDescriptor_t filter_desc,
    const void* filter,
    const cnnlTensorDescriptor_t output_desc,
3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
    void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSetTensorDescriptorOnchipDataType(input_desc, CNNL_DTYPE_INT16));
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSetTensorDescriptorOnchipDataType(filter_desc, CNNL_DTYPE_INT16));
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSetTensorDescriptorOnchipDataType(output_desc, tensor_dtype));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetTensorDescriptorPositionAndScale(
      input_desc, input_position, input_scale));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetTensorDescriptorPositionAndScale(
      filter_desc, filter_position, filter_scale));

  cnnlFusedOpsPlan_t fusion_plan = nullptr;
  cnnlActivationDescriptor_t active_desc = nullptr;
  cnnlFusedOpsConstParamPack_t cparam_pack = nullptr;
  cnnlFusedOpsVariantParamPack_t vparam_pack = nullptr;
  cnnlConvolutionForwardAlgo_t algo;
  cnnlFusedOps_t fusion_type = CNNL_CONV_SCALE_BN_ACTIVATION;
  cnnlConvolutionCastMode_t cast_mode = CNNL_OFFLINE_SYMMETRIC_QUANTIZE;
  cnnlConvolutionFwdPreference_t preference = CNNL_CONVOLUTION_FWD_FASTEST;

3301 3302 3303 3304 3305 3306 3307
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetConvolutionForwardAlgorithm(handle,
                                                                conv_desc,
                                                                input_desc,
                                                                filter_desc,
                                                                output_desc,
                                                                preference,
                                                                &algo));
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlCreateFusedOpsPlan(&fusion_plan, fusion_type));
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlCreateFusedOpsConstParamPack(&cparam_pack, fusion_type));
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlCreateFusedOpsVariantParamPack(&vparam_pack, fusion_type));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetFusedOpsConstParamPackAttribute(
      cparam_pack, CNNL_XDESC, input_desc));
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSetFusedOpsVariantParamPackAttribute(vparam_pack, CNNL_PTR_X, input));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetFusedOpsConstParamPackAttribute(
      cparam_pack, CNNL_WDESC, filter_desc));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetFusedOpsVariantParamPackAttribute(
      vparam_pack, CNNL_PTR_W, filter));

  if (fused_ops_number > 1) {
    cnnlCreateActivationDescriptor(&active_desc);
    cnnlNanPropagation_t nan_opt = CNNL_NOT_PROPAGATE_NAN;
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetActivationDescriptor(
        active_desc, CNNL_ACTIVATION_RELU, nan_opt, 0.0));
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetFusedOpsConstParamPackAttribute(
        cparam_pack, CNNL_ACTIVATION_DESC, active_desc));
  }
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetFusedOpsConstParamPackAttribute(
      cparam_pack, CNNL_BN_WEIGHT_BIAS_MEAN_VAR_DESC, scale_desc));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetFusedOpsVariantParamPackAttribute(
      vparam_pack, CNNL_PTR_BN_WEIGHT, scale_ptr));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetFusedOpsConstParamPackAttribute(
      cparam_pack, CNNL_BN_WEIGHT_BIAS_MEAN_VAR_DESC, offset_desc));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetFusedOpsVariantParamPackAttribute(
      vparam_pack, CNNL_PTR_BN_BIAS, offset_ptr));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetFusedOpsConstParamPackAttribute(
      cparam_pack, CNNL_BN_WEIGHT_BIAS_MEAN_VAR_DESC, mean_desc));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetFusedOpsVariantParamPackAttribute(
      vparam_pack, CNNL_PTR_BN_MEAN, mean_ptr));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetFusedOpsConstParamPackAttribute(
      cparam_pack, CNNL_BN_WEIGHT_BIAS_MEAN_VAR_DESC, variance_desc));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetFusedOpsVariantParamPackAttribute(
      vparam_pack, CNNL_PTR_BN_VAR, variance_ptr));

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetFusedOpsConstParamPackAttribute(
      cparam_pack, CNNL_CONV_DESC, conv_desc));

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetFusedOpsConstParamPackAttribute(
      cparam_pack, CNNL_SCALAR_CONV_FWD_ALGO, &algo));

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetFusedOpsConstParamPackAttribute(
      cparam_pack, CNNL_SCALAR_CONV_FWD_CAST_MODE, &cast_mode));

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetFusedOpsVariantParamPackAttribute(
      vparam_pack, CNNL_SCALAR_BN_EPSILON, epsilon_ptr));

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetFusedOpsConstParamPackAttribute(
      cparam_pack, CNNL_YDESC, output_desc));

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetFusedOpsVariantParamPackAttribute(
      vparam_pack, CNNL_PTR_Y, output));

  // get workspace size
  size_t workspace_size = 0;
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlMakeFusedOpsPlan(handle, fusion_plan, cparam_pack, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

  if (workspace_size > 0) {
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetFusedOpsVariantParamPackAttribute(
        vparam_pack, CNNL_PTR_WORKSPACE, workspace_ptr));
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetFusedOpsVariantParamPackAttribute(
        vparam_pack, CNNL_SCALAR_WORKSPACE_SIZE, &workspace_size));
  }
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlFusedOpsExecute(handle, fusion_plan, vparam_pack));

  if (active_desc) {
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlDestroyActivationDescriptor(active_desc));
  }

  if (cparam_pack) {
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlDestroyFusedOpsConstParamPack(cparam_pack));
  }

  if (vparam_pack) {
    PADDLE_ENFORCE_MLU_SUCCESS(
        cnnlDestroyFusedOpsVariantParamPack(vparam_pack));
  }

  if (fusion_plan) {
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlDestroyFusedOpsPlan(fusion_plan));
  }
}

/* static */ void MLUCnnl::ConvBackpropInput(
3403 3404 3405 3406 3407 3408 3409 3410
    const ExecutionContext& ctx,
    const cnnlConvolutionDescriptor_t conv_desc,
    const cnnlTensorDescriptor_t filter_desc,
    const void* filter,
    const cnnlTensorDescriptor_t out_backprop_desc,
    const void* out_backprop,
    const cnnlTensorDescriptor_t in_backprop_desc,
    void* in_backprop) {
3411 3412 3413 3414 3415
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  cnnlConvolutionBwdDataAlgo_t algo;
  const cnnlConvolutionBwdDataPreference_t preference =
      CNNL_CONVOLUTION_BWD_DATA_FASTEST;
3416 3417 3418 3419 3420 3421 3422 3423
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetConvolutionBackwardDataAlgorithm(handle,
                                              filter_desc,
                                              out_backprop_desc,
                                              conv_desc,
                                              in_backprop_desc,
                                              preference,
                                              &algo));
3424 3425

  size_t workspace_size = 0;
3426 3427 3428 3429 3430 3431 3432 3433
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetConvolutionBackwardDataWorkspaceSize(handle,
                                                  filter_desc,
                                                  out_backprop_desc,
                                                  conv_desc,
                                                  in_backprop_desc,
                                                  algo,
                                                  &workspace_size));
3434 3435 3436 3437 3438 3439

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlConvolutionBackwardData(handle,
                                                         nullptr /*alpha*/,
                                                         filter_desc,
                                                         filter,
                                                         out_backprop_desc,
                                                         out_backprop,
                                                         conv_desc,
                                                         algo,
                                                         workspace_ptr,
                                                         workspace_size,
                                                         nullptr /*beta*/,
                                                         in_backprop_desc,
                                                         in_backprop));
3453 3454 3455
}

/* static */ void MLUCnnl::QuantizeConvBackpropInput(
3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
    const ExecutionContext& ctx,
    const cnnlConvolutionDescriptor_t conv_desc,
    const cnnlDataType_t tensor_dtype,
    const cnnlDataType_t dt_onchip,
    const void* filter_position,
    const void* filter_scale,
    const void* filter_offset,
    const void* out_backprop_position,
    const void* out_backprop_scale,
    const void* out_backprop_offset,
    const cnnlTensorDescriptor_t filter_desc,
    const void* filter,
    const cnnlTensorDescriptor_t out_backprop_desc,
    const void* out_backprop,
    const cnnlTensorDescriptor_t in_backprop_desc,
    void* in_backprop) {
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSetTensorDescriptorOnchipDataType(filter_desc, dt_onchip));
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSetTensorDescriptorOnchipDataType(out_backprop_desc, dt_onchip));

  cnnlConvolutionBwdDataAlgo_t algo;
  const cnnlConvolutionBwdDataPreference_t preference =
      CNNL_CONVOLUTION_BWD_DATA_FASTEST;
3482 3483 3484 3485 3486 3487 3488 3489
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetConvolutionBackwardDataAlgorithm(handle,
                                              filter_desc,
                                              out_backprop_desc,
                                              conv_desc,
                                              in_backprop_desc,
                                              preference,
                                              &algo));
3490 3491

  size_t workspace_size = 0;
3492 3493 3494 3495 3496 3497 3498 3499
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetConvolutionBackwardDataWorkspaceSize(handle,
                                                  filter_desc,
                                                  out_backprop_desc,
                                                  conv_desc,
                                                  in_backprop_desc,
                                                  algo,
                                                  &workspace_size));
3500 3501 3502 3503 3504 3505

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlQuantizeConvolutionBackwardData(handle,
                                          nullptr /*alpha*/,
                                          filter_desc,
                                          filter,
                                          filter_position,
                                          filter_scale,
                                          filter_offset,
                                          out_backprop_desc,
                                          out_backprop,
                                          out_backprop_position,
                                          out_backprop_scale,
                                          out_backprop_offset,
                                          conv_desc,
                                          algo,
                                          workspace_ptr,
                                          workspace_size,
                                          nullptr /*beta*/,
                                          in_backprop_desc,
                                          in_backprop));
3526 3527 3528
}

/* static */ void MLUCnnl::ConvBackpropFilter(
3529 3530 3531 3532 3533 3534 3535 3536
    const ExecutionContext& ctx,
    const cnnlConvolutionDescriptor_t conv_desc,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    const cnnlTensorDescriptor_t out_backprop_desc,
    const void* out_backprop,
    const cnnlTensorDescriptor_t filter_backprop_desc,
    void* filter_backprop) {
3537 3538 3539 3540 3541
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  cnnlConvolutionBwdFilterAlgo_t algo;
  const cnnlConvolutionBwdFilterPreference_t preference =
      CNNL_CONVOLUTION_BWD_FILTER_FASTEST;
3542 3543 3544 3545 3546 3547 3548 3549
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetConvolutionBackwardFilterAlgorithm(handle,
                                                conv_desc,
                                                input_desc,
                                                out_backprop_desc,
                                                filter_backprop_desc,
                                                preference,
                                                &algo));
3550 3551

  size_t workspace_size = 0;
3552 3553 3554 3555 3556 3557 3558 3559
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetConvolutionBackwardFilterWorkspaceSize(handle,
                                                    input_desc,
                                                    out_backprop_desc,
                                                    filter_backprop_desc,
                                                    conv_desc,
                                                    algo,
                                                    &workspace_size));
3560 3561 3562 3563 3564 3565

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlConvolutionBackwardFilter(handle,
                                                           nullptr /*alpha*/,
                                                           input_desc,
                                                           input,
                                                           out_backprop_desc,
                                                           out_backprop,
                                                           conv_desc,
                                                           algo,
                                                           workspace_ptr,
                                                           workspace_size,
                                                           nullptr /*beta*/,
                                                           filter_backprop_desc,
                                                           filter_backprop));
3579 3580 3581
}

/* static */ void MLUCnnl::QuantizeConvBackpropFilter(
3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
    const ExecutionContext& ctx,
    const cnnlConvolutionDescriptor_t conv_desc,
    const cnnlDataType_t tensor_dtype,
    const cnnlDataType_t dt_onchip,
    const void* input_position,
    const void* input_scale,
    const void* input_offset,
    const void* out_backprop_position,
    const void* out_backprop_scale,
    const void* out_backprop_offset,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    const cnnlTensorDescriptor_t out_backprop_desc,
    const void* out_backprop,
    const cnnlTensorDescriptor_t filter_backprop_desc,
    void* filter_backprop) {
3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSetTensorDescriptorOnchipDataType(input_desc, dt_onchip));
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSetTensorDescriptorOnchipDataType(out_backprop_desc, dt_onchip));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetTensorDescriptorOnchipDataType(
      filter_backprop_desc, tensor_dtype));

  cnnlConvolutionBwdFilterAlgo_t algo;
  const cnnlConvolutionBwdFilterPreference_t preference =
      CNNL_CONVOLUTION_BWD_FILTER_FASTEST;
3610 3611 3612 3613 3614 3615 3616 3617
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetConvolutionBackwardFilterAlgorithm(handle,
                                                conv_desc,
                                                input_desc,
                                                out_backprop_desc,
                                                filter_backprop_desc,
                                                preference,
                                                &algo));
3618 3619

  size_t workspace_size = 0;
3620 3621 3622 3623 3624 3625 3626 3627
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetConvolutionBackwardFilterWorkspaceSize(handle,
                                                    input_desc,
                                                    out_backprop_desc,
                                                    filter_backprop_desc,
                                                    conv_desc,
                                                    algo,
                                                    &workspace_size));
3628 3629 3630 3631 3632 3633

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlQuantizeConvolutionBackwardFilter(handle,
                                            nullptr /*alpha*/,
                                            input_desc,
                                            input,
                                            input_position,
                                            input_scale,
                                            input_offset,
                                            out_backprop_desc,
                                            out_backprop,
                                            out_backprop_position,
                                            out_backprop_scale,
                                            out_backprop_offset,
                                            conv_desc,
                                            algo,
                                            workspace_ptr,
                                            workspace_size,
                                            nullptr /*beta*/,
                                            filter_backprop_desc,
                                            filter_backprop));
}

/* static */ void MLUCnnl::DCNForward(const ExecutionContext& ctx,
                                      const cnnlDCNDescriptor_t dcn_desc,
                                      const cnnlTensorDescriptor_t input_desc,
                                      const void* input,
                                      const cnnlTensorDescriptor_t offset_desc,
                                      const void* offset,
                                      const cnnlTensorDescriptor_t mask_desc,
                                      const void* mask,
                                      const cnnlTensorDescriptor_t weight_desc,
                                      const void* weight,
                                      const cnnlTensorDescriptor_t bias_desc,
                                      const void* bias,
                                      const cnnlTensorDescriptor_t output_desc,
                                      void* output) {
3670 3671 3672
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size = 0;
3673 3674 3675 3676 3677 3678 3679 3680 3681
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetDCNForwardWorkspaceSize(handle,
                                                            dcn_desc,
                                                            input_desc,
                                                            offset_desc,
                                                            mask_desc,
                                                            weight_desc,
                                                            bias_desc,
                                                            output_desc,
                                                            &workspace_size));
3682 3683 3684 3685 3686 3687

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlDCNForward(handle,
                                            dcn_desc,
                                            input_desc,
                                            input,
                                            offset_desc,
                                            offset,
                                            mask_desc,
                                            mask,
                                            weight_desc,
                                            weight,
                                            bias_desc,
                                            bias,
                                            workspace_ptr,
                                            workspace_size,
                                            output_desc,
                                            output));
3704 3705 3706
}

/* static */ void MLUCnnl::DCNBackwardData(
3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
    const ExecutionContext& ctx,
    const cnnlDCNDescriptor_t dcn_desc,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    const cnnlTensorDescriptor_t offset_desc,
    const void* offset,
    const cnnlTensorDescriptor_t mask_desc,
    const void* mask,
    const cnnlTensorDescriptor_t weight_desc,
    const void* weight,
    const cnnlTensorDescriptor_t grad_output_desc,
    const void* grad_output,
    const cnnlTensorDescriptor_t grad_input_desc,
    void* grad_input,
    const cnnlTensorDescriptor_t grad_offset_desc,
    void* grad_offset,
    const cnnlTensorDescriptor_t grad_mask_desc,
    void* grad_mask) {
3725 3726 3727
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size = 0;
3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetDCNBakcwardDataWorkspaceSize(handle,
                                          dcn_desc,
                                          input_desc,
                                          offset_desc,
                                          mask_desc,
                                          weight_desc,
                                          grad_output_desc,
                                          grad_input_desc,
                                          grad_offset_desc,
                                          grad_mask_desc,
                                          &workspace_size));
3740 3741 3742 3743 3744 3745

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlDCNBackwardData(handle,
                                                 dcn_desc,
                                                 input_desc,
                                                 input,
                                                 offset_desc,
                                                 offset,
                                                 mask_desc,
                                                 mask,
                                                 weight_desc,
                                                 weight,
                                                 grad_output_desc,
                                                 grad_output,
                                                 workspace_ptr,
                                                 workspace_size,
                                                 grad_input_desc,
                                                 grad_input,
                                                 grad_offset_desc,
                                                 grad_offset,
                                                 grad_mask_desc,
                                                 grad_mask));
3766 3767 3768
}

/* static */ void MLUCnnl::DCNBackwardWeight(
3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782
    const ExecutionContext& ctx,
    const cnnlDCNDescriptor_t dcn_desc,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    const cnnlTensorDescriptor_t offset_desc,
    const void* offset,
    const cnnlTensorDescriptor_t mask_desc,
    const void* mask,
    const cnnlTensorDescriptor_t grad_output_desc,
    const void* grad_output,
    const cnnlTensorDescriptor_t grad_weight_desc,
    void* grad_weight,
    const cnnlTensorDescriptor_t grad_bias_desc,
    void* grad_bias) {
3783 3784 3785
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size = 0;
3786 3787 3788 3789 3790 3791 3792 3793 3794 3795
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetDCNBackwardWeightWorkspaceSize(handle,
                                            dcn_desc,
                                            input_desc,
                                            offset_desc,
                                            mask_desc,
                                            grad_output_desc,
                                            grad_weight_desc,
                                            grad_bias_desc,
                                            &workspace_size));
3796 3797 3798 3799 3800 3801

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlDCNBackwardWeight(handle,
                                                   dcn_desc,
                                                   input_desc,
                                                   input,
                                                   offset_desc,
                                                   offset,
                                                   mask_desc,
                                                   mask,
                                                   grad_output_desc,
                                                   grad_output,
                                                   workspace_ptr,
                                                   workspace_size,
                                                   grad_weight_desc,
                                                   grad_weight,
                                                   grad_bias_desc,
                                                   grad_bias));
3818 3819
}

3820
/* static */ void MLUCnnl::QuantizeMatMul(
3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
    const ExecutionContext& ctx,
    const bool transpose_a,
    const bool transpose_b,
    const cnnlTensorDescriptor_t a_desc,
    const void* a,
    const void* a_position,
    const void* a_scale,
    const void* a_offset,
    const cnnlTensorDescriptor_t b_desc,
    const void* b,
    const void* b_position,
    const void* b_scale,
    const void* b_offset,
    const cnnlDataType_t quant_type,
    const cnnlDataType_t data_type,
    const cnnlTensorDescriptor_t output_desc,
3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876
    void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  // Set onchip data type
  cnnlSetTensorDescriptorOnchipDataType(a_desc, quant_type);
  cnnlSetTensorDescriptorOnchipDataType(b_desc, quant_type);
  cnnlSetTensorDescriptorOnchipDataType(output_desc, data_type);

  // Create and set matmul descriptor
  cnnlMatMulDescriptor_t matmul_desc;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlMatMulDescCreate(&matmul_desc));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetMatMulDescAttr(
      matmul_desc, CNNL_MATMUL_DESC_COMPUTE_TYPE, &data_type, sizeof(int)));
  int transpose_a_int = static_cast<int>(transpose_a);
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetMatMulDescAttr(
      matmul_desc, CNNL_MATMUL_DESC_TRANSA, &(transpose_a_int), sizeof(int)));
  int transpose_b_int = static_cast<int>(transpose_b);
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetMatMulDescAttr(
      matmul_desc, CNNL_MATMUL_DESC_TRANSB, &(transpose_b_int), sizeof(int)));

  // Create and get matmul algorithim
  cnnlMatMulAlgo_t algo;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlMatMulAlgoCreate(&algo));
  const cnnlMatMulPreference_t preference = CNNL_MATMUL_FASTEST;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetQuantizeMatMulAlgorithm(
      handle, matmul_desc, a_desc, b_desc, output_desc, preference, &algo));

  // Get workspace
  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetQuantizeMatMulWorkspaceSize(
      handle, matmul_desc, a_desc, b_desc, output_desc, algo, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

  // Compute
  float alpha = 1.0;
  float beta = 0.0;
3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlQuantizeMatMul(handle,
                                                matmul_desc,
                                                reinterpret_cast<void*>(&alpha),
                                                a_desc,
                                                a,
                                                a_position,
                                                a_scale,
                                                a_offset,
                                                b_desc,
                                                b,
                                                b_position,
                                                b_scale,
                                                b_offset,
                                                reinterpret_cast<void*>(&beta),
                                                output_desc,
                                                output,
                                                algo,
                                                workspace_ptr,
                                                workspace_size));
3896 3897 3898 3899 3900 3901 3902

  // Destroy matmul descriptor and algorithim
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlMatMulDescDestroy(matmul_desc));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlMatMulAlgoDestroy(algo));
}

/* static */ void MLUCnnl::QuantizeBatchMatMul(
3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
    const ExecutionContext& ctx,
    const bool adj_x,
    const bool adj_y,
    const cnnlTensorDescriptor_t in0_desc,
    const void* in0,
    const void* in0_position,
    const void* in0_scale,
    const void* in0_offset,
    const cnnlTensorDescriptor_t in1_desc,
    const void* in1,
    const void* in1_position,
    const void* in1_scale,
    const void* in1_offset,
    const cnnlDataType_t quant_type,
    const cnnlDataType_t data_type,
    const cnnlTensorDescriptor_t output_desc,
    void* output) {
3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  // Set onchip data type
  cnnlSetTensorDescriptorOnchipDataType(in0_desc, quant_type);
  cnnlSetTensorDescriptorOnchipDataType(in1_desc, quant_type);
  cnnlSetTensorDescriptorOnchipDataType(output_desc, data_type);

  // Create and set batch matmul descriptor
  cnnlBatchMatMulDescriptor_t bmm_desc;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlBatchMatMulDescCreate(&bmm_desc));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetBatchMatMulDescAttr(
      bmm_desc, CNNL_BMM_DESC_COMPUTE_TYPE, &data_type, sizeof(int)));
  int transpose_a_int = static_cast<int>(adj_x);
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetBatchMatMulDescAttr(
      bmm_desc, CNNL_BMM_DESC_TRANSA, &(transpose_a_int), sizeof(int)));
  int transpose_b_int = static_cast<int>(adj_y);
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetBatchMatMulDescAttr(
      bmm_desc, CNNL_BMM_DESC_TRANSB, &(transpose_b_int), sizeof(int)));

  // Create and get batch matmul algorithim
  cnnlBatchMatMulAlgo_t algo;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlBatchMatMulAlgoCreate(&algo));
  const cnnlBatchMatMulPreference_t preference = CNNL_BMM_FASTEST;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetQuantizeBatchMatMulAlgorithm(
      handle, bmm_desc, in0_desc, in1_desc, output_desc, preference, &algo));

  // Get workspace
  size_t workspace_size;
3948 3949 3950 3951 3952 3953 3954 3955
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetQuantizeBatchMatMulWorkspaceSize(handle,
                                              bmm_desc,
                                              in0_desc,
                                              in1_desc,
                                              output_desc,
                                              algo,
                                              &workspace_size));
3956 3957 3958 3959 3960 3961 3962 3963 3964

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

  // Compute
  float alpha = 1.0;
  float beta = 0.0;
3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlQuantizeBatchMatMul(handle,
                              bmm_desc,
                              reinterpret_cast<void*>(&alpha),
                              in0_desc,
                              in0,
                              in0_position,
                              in0_scale,
                              in0_offset,
                              in1_desc,
                              in1,
                              in1_position,
                              in1_scale,
                              in1_offset,
                              reinterpret_cast<void*>(&beta),
                              output_desc,
                              output,
                              algo,
                              workspace_ptr,
                              workspace_size));
3985 3986 3987 3988 3989 3990 3991

  // Destroy matmul descriptor and algorithim
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlBatchMatMulDescDestroy(bmm_desc));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlBatchMatMulAlgoDestroy(algo));
}

/* static */ void MLUCnnl::QuantizeBatchMatMulBCast(
3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
    const ExecutionContext& ctx,
    const bool adj_x,
    const bool adj_y,
    const cnnlTensorDescriptor_t in0_desc,
    const void* in0,
    const void* in0_position,
    const void* in0_scale,
    const void* in0_offset,
    const cnnlTensorDescriptor_t in1_desc,
    const void* in1,
    const void* in1_position,
    const void* in1_scale,
    const void* in1_offset,
    const cnnlDataType_t quant_type,
    const cnnlDataType_t data_type,
    const cnnlTensorDescriptor_t output_desc,
    void* output) {
4009 4010 4011 4012 4013 4014 4015 4016 4017 4018
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  // Set onchip data type
  cnnlSetTensorDescriptorOnchipDataType(in0_desc, quant_type);
  cnnlSetTensorDescriptorOnchipDataType(in1_desc, quant_type);
  cnnlSetTensorDescriptorOnchipDataType(output_desc, data_type);

  // Create and set batch matmul descriptor
  cnnlBatchMatMulBCastDescriptor_t bmm_bcast_desc;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlBatchMatMulBCastDescCreate(&bmm_bcast_desc));
4019 4020 4021 4022 4023
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSetBatchMatMulBCastDescAttr(bmm_bcast_desc,
                                      CNNL_BMM_BCAST_DESC_COMPUTE_TYPE,
                                      &data_type,
                                      sizeof(int)));
4024
  int transpose_a_int = static_cast<int>(adj_x);
4025 4026 4027 4028 4029
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSetBatchMatMulBCastDescAttr(bmm_bcast_desc,
                                      CNNL_BMM_BCAST_DESC_TRANSA,
                                      &(transpose_a_int),
                                      sizeof(int)));
4030
  int transpose_b_int = static_cast<int>(adj_y);
4031 4032 4033 4034 4035
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSetBatchMatMulBCastDescAttr(bmm_bcast_desc,
                                      CNNL_BMM_BCAST_DESC_TRANSB,
                                      &(transpose_b_int),
                                      sizeof(int)));
4036 4037 4038 4039 4040

  // Create and get batch matmul algorithim
  cnnlBatchMatMulBCastAlgo_t algo;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlBatchMatMulBCastAlgoCreate(&algo));
  const cnnlBatchMatMulBCastPreference_t preference = CNNL_BMM_BCAST_FASTEST;
4041 4042 4043 4044 4045 4046 4047 4048
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetQuantizeBatchMatMulBCastAlgorithm(handle,
                                               bmm_bcast_desc,
                                               in0_desc,
                                               in1_desc,
                                               output_desc,
                                               preference,
                                               &algo));
4049 4050 4051

  // Get workspace
  size_t workspace_size;
4052 4053 4054 4055 4056 4057 4058 4059
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetQuantizeBatchMatMulBCastWorkspaceSize(handle,
                                                   bmm_bcast_desc,
                                                   in0_desc,
                                                   in1_desc,
                                                   output_desc,
                                                   algo,
                                                   &workspace_size));
4060 4061 4062 4063 4064 4065 4066 4067 4068

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

  // Compute
  float alpha = 1.0;
  float beta = 0.0;
4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlQuantizeBatchMatMulBCast(handle,
                                   bmm_bcast_desc,
                                   reinterpret_cast<void*>(&alpha),
                                   in0_desc,
                                   in0,
                                   in0_position,
                                   in0_scale,
                                   in0_offset,
                                   in1_desc,
                                   in1,
                                   in1_position,
                                   in1_scale,
                                   in1_offset,
                                   reinterpret_cast<void*>(&beta),
                                   output_desc,
                                   output,
                                   algo,
                                   workspace_ptr,
                                   workspace_size));
4089 4090 4091 4092 4093 4094

  // Destroy matmul descriptor and algorithim
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlBatchMatMulBCastDescDestroy(bmm_bcast_desc));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlBatchMatMulBCastAlgoDestroy(algo));
}

4095 4096 4097 4098 4099 4100 4101
/* static */ void MLUCnnl::Transpose(const ExecutionContext& ctx,
                                     const std::vector<int> perm,
                                     const int input_dim,
                                     const cnnlTensorDescriptor_t input_desc,
                                     const void* input,
                                     const cnnlTensorDescriptor_t output_desc,
                                     void* output) {
4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  cnnlTransposeDescriptor_t perm_desc;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlCreateTransposeDescriptor(&perm_desc));
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSetTransposeDescriptor(perm_desc, input_dim, perm.data()));

  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetTransposeWorkspaceSize(
      handle, input_desc, perm_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

4117 4118 4119 4120 4121 4122 4123 4124
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlTranspose_v2(handle,
                                              perm_desc,
                                              input_desc,
                                              input,
                                              output_desc,
                                              output,
                                              workspace_ptr,
                                              workspace_size));
4125 4126 4127 4128 4129
  if (perm_desc) {
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlDestroyTransposeDescriptor(perm_desc));
  }
}

4130 4131 4132 4133 4134 4135 4136
/* static */ void MLUCnnl::TrilTriu(const ExecutionContext& ctx,
                                    const int diagonal_k,
                                    const bool tri_up_mode,
                                    const cnnlTensorDescriptor_t input_desc,
                                    const void* input,
                                    const cnnlTensorDescriptor_t output_desc,
                                    void* output) {
4137
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
4138 4139
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlTri(
      handle, diagonal_k, tri_up_mode, input_desc, input, output_desc, output));
4140 4141
}

4142
/* static */ void MLUCnnl::MatrixBandPart(
4143 4144 4145 4146 4147 4148
    const ExecutionContext& ctx,
    const cnnlTensorDescriptor_t data_desc,
    const void* input,
    const int num_lower,
    const int num_upper,
    void* output) {
4149 4150
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

4151 4152
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlMatrixBandPart(
      handle, data_desc, input, num_lower, num_upper, output));
4153 4154 4155 4156
}

/* static */ void MLUCnnl::NumTrue(const ExecutionContext& ctx,
                                   const cnnlTensorDescriptor_t x_desc,
4157 4158
                                   const void* x,
                                   Tensor index,
4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176
                                   uint32_t* num_true) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size = 0;
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetNumTrueWorkspaceSize(handle, x_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  index = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* index_ptr = index.mutable_data(ctx.GetPlace());

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlNumTrue(
      handle, x_desc, x, static_cast<uint32_t*>(index_ptr), num_true));
}

/* static */ void MLUCnnl::Where(const ExecutionContext& ctx,
                                 const cnnlTensorDescriptor_t x_desc,
4177
                                 const void* x,
4178 4179 4180
                                 const cnnlTensorDescriptor_t num_true_desc,
                                 const void* num_true,
                                 const bool as_tuple,
4181
                                 const cnnlTensorDescriptor_t y_desc,
4182
                                 void* y) {
4183
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
4184
  size_t workspace_size;
4185
  PADDLE_ENFORCE_MLU_SUCCESS(
4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202
      cnnlGetWhereWorkspaceSize(handle, num_true_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlWhere_v2(handle,
                                          x_desc,
                                          x,
                                          num_true_desc,
                                          num_true,
                                          as_tuple,
                                          workspace_ptr,
                                          workspace_size,
                                          y_desc,
                                          y));
4203 4204
}

4205 4206 4207 4208 4209 4210 4211 4212 4213 4214
/* static */ void MLUCnnl::InTopK(const ExecutionContext& ctx,
                                  const cnnlTensorDescriptor_t predictions_desc,
                                  const void* predictions,
                                  const cnnlTensorDescriptor_t targets_desc,
                                  const void* targets,
                                  const cnnlTensorDescriptor_t k_desc,
                                  const void* k,
                                  const int k_int,
                                  const cnnlTensorDescriptor_t output_desc,
                                  void* output) {
4215
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
4216 4217 4218 4219 4220 4221 4222 4223 4224 4225
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlInTopK(handle,
                                        predictions_desc,
                                        predictions,
                                        targets_desc,
                                        targets,
                                        k_desc,
                                        k,
                                        k_int,
                                        output_desc,
                                        output));
4226 4227
}

4228 4229 4230 4231 4232 4233 4234 4235 4236 4237
/* static */ void MLUCnnl::ScatterNd(const ExecutionContext& ctx,
                                     cnnlScatterNdMode_t mode,
                                     const cnnlTensorDescriptor_t indices_desc,
                                     const void* indices,
                                     const cnnlTensorDescriptor_t updates_desc,
                                     const void* updates,
                                     const cnnlTensorDescriptor_t input_desc,
                                     const void* input,
                                     const cnnlTensorDescriptor_t output_desc,
                                     void* output) {
4238
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
4239 4240 4241 4242 4243 4244 4245 4246 4247 4248
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlScatterNd_v2(handle,
                                              mode,
                                              indices_desc,
                                              indices,
                                              updates_desc,
                                              updates,
                                              input_desc,
                                              input,
                                              output_desc,
                                              output));
4249 4250
}

4251 4252 4253 4254 4255 4256 4257 4258
/* static */ void MLUCnnl::BitWise(const ExecutionContext& ctx,
                                   const cnnlBitComputeOp_t optype,
                                   const cnnlTensorDescriptor_t input1_desc,
                                   const void* input1,
                                   const cnnlTensorDescriptor_t input2_desc,
                                   const void* input2,
                                   const cnnlTensorDescriptor_t output_desc,
                                   void* output) {
4259 4260 4261 4262 4263 4264 4265 4266 4267 4268
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetBitComputeWorkspaceSize(
      handle, input1_desc, input2_desc, output_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

4269 4270 4271 4272 4273 4274 4275 4276 4277 4278
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlBitCompute_v2(handle,
                                               optype,
                                               input1_desc,
                                               input1,
                                               input2_desc,
                                               input2,
                                               output_desc,
                                               output,
                                               workspace_ptr,
                                               workspace_size));
4279 4280 4281 4282 4283
}

/* static */ void MLUCnnl::QR(const ExecutionContext& ctx,
                              const cnnlTensorDescriptor_t a_desc,
                              const void* a,
4284 4285 4286 4287
                              const cnnlTensorDescriptor_t q_desc,
                              void* q,
                              const cnnlTensorDescriptor_t r_desc,
                              void* r,
4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298
                              const bool some) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetQRWorkspaceSize(handle, a_desc, some, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

4299 4300 4301 4302 4303 4304 4305 4306 4307 4308
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlQR(handle,
                                    a_desc,
                                    a,
                                    q_desc,
                                    q,
                                    r_desc,
                                    r,
                                    workspace_ptr,
                                    workspace_size,
                                    some));
4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319
}

/* static */ void MLUCnnl::Reciprocal(const ExecutionContext& ctx,
                                      const cnnlTensorDescriptor_t input_desc,
                                      const void* input,
                                      const cnnlTensorDescriptor_t output_desc,
                                      void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlReciprocal(handle, input_desc, input, output_desc, output));
4320 4321
}

4322 4323 4324 4325 4326 4327 4328 4329 4330 4331
/* static */ void MLUCnnl::BceLoss(const ExecutionContext& ctx,
                                   const cnnlBceLossReduction_t reduction,
                                   const cnnlTensorDescriptor_t input_desc,
                                   const void* input,
                                   const cnnlTensorDescriptor_t target_desc,
                                   const void* target,
                                   const cnnlTensorDescriptor_t weight_desc,
                                   const void* weight,
                                   const cnnlTensorDescriptor_t output_desc,
                                   void* output) {
4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetBceLossWorkspaceSize(
      handle, input_desc, weight_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlBceLoss(handle,
                                         input_desc,
                                         input,
                                         target_desc,
                                         target,
                                         weight_desc,
                                         weight,
                                         reduction,
                                         workspace_ptr,
                                         workspace_size,
                                         output_desc,
                                         output));
4355 4356 4357
}

/* static */ void MLUCnnl::BceLossBackward(
4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369
    const ExecutionContext& ctx,
    const cnnlBceLossReduction_t reduction,
    const cnnlTensorDescriptor_t grad_desc,
    const void* grad,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    const cnnlTensorDescriptor_t target_desc,
    const void* target,
    const cnnlTensorDescriptor_t weight_desc,
    const void* weight,
    const cnnlTensorDescriptor_t output_desc,
    void* output) {
4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetBceLossBackwardWorkspaceSize(
      handle, target_desc, weight_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlBceLossBackward(handle,
                                                 grad_desc,
                                                 grad,
                                                 input_desc,
                                                 input,
                                                 target_desc,
                                                 target,
                                                 weight_desc,
                                                 weight,
                                                 reduction,
                                                 workspace_ptr,
                                                 workspace_size,
                                                 output_desc,
                                                 output));
4395 4396
}

4397
/* static */ void MLUCnnl::EmbeddingForward(
4398 4399 4400 4401 4402 4403 4404 4405
    const ExecutionContext& ctx,
    const int padding_idx,
    const cnnlTensorDescriptor_t weight_desc,
    const void* weight,
    const cnnlTensorDescriptor_t indices_desc,
    const int* indices,
    const cnnlTensorDescriptor_t output_desc,
    void* output) {
4406 4407
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

4408 4409 4410 4411 4412 4413 4414 4415 4416 4417
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlEmbeddingForward_v2(handle,
                                                     weight_desc,
                                                     weight,
                                                     indices_desc,
                                                     indices,
                                                     padding_idx,
                                                     nullptr /*max_norm*/,
                                                     nullptr /*norm_type*/,
                                                     output_desc,
                                                     output));
4418 4419
}

4420
/* static */ void MLUCnnl::Transform(const ExecutionContext& ctx,
4421 4422
                                     const void* alpha,
                                     const void* beta,
4423 4424 4425 4426 4427 4428 4429
                                     const cnnlTensorDescriptor_t input_desc,
                                     const void* input,
                                     const cnnlTensorDescriptor_t output_desc,
                                     void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  const cnnlPointerMode_t pointer_mode = CNNL_POINTER_MODE_HOST;
4430 4431 4432 4433 4434 4435 4436 4437
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlTransform_v2(handle,
                                              pointer_mode,
                                              alpha,
                                              input_desc,
                                              input,
                                              beta,
                                              output_desc,
                                              output));
4438 4439
}

4440
/* static */ void MLUCnnl::EmbeddingBackward(
4441 4442 4443 4444 4445 4446 4447 4448 4449
    const ExecutionContext& ctx,
    int padding_idx,
    bool scale_grad_by_freq,
    const cnnlTensorDescriptor_t indices_desc,
    const void* indices,
    const cnnlTensorDescriptor_t diff_desc,
    const void* diff,
    const cnnlTensorDescriptor_t output_desc,
    void* output) {
4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetEmbeddingBackwardWorkspaceSize(
      handle, diff_desc, output_desc, scale_grad_by_freq, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlEmbeddingBackward(handle,
                                                   padding_idx,
                                                   scale_grad_by_freq,
                                                   indices_desc,
                                                   indices,
                                                   diff_desc,
                                                   diff,
                                                   workspace_ptr,
                                                   workspace_size,
                                                   output_desc,
                                                   output));
4472 4473
}

F
fwenguang 已提交
4474
/* static */ void MLUCnnl::BceWithLogits(
4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486
    const ExecutionContext& ctx,
    cnnlBceWithLogitsReduction_t reduction,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    const cnnlTensorDescriptor_t target_desc,
    const void* target,
    const cnnlTensorDescriptor_t weight_desc,
    const void* weight,
    const cnnlTensorDescriptor_t pos_weight_desc,
    const void* pos_weight,
    const cnnlTensorDescriptor_t output_desc,
    void* output) {
F
fwenguang 已提交
4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetBceWithLogitsWorkspaceSize(
      handle, input_desc, weight_desc, pos_weight_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

  const cnnlComputationPreference_t prefer = CNNL_COMPUTATION_HIGH_PRECISION;
4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlBceWithLogits_v2(handle,
                                                  prefer,
                                                  input_desc,
                                                  input,
                                                  target_desc,
                                                  target,
                                                  weight_desc,
                                                  weight,
                                                  pos_weight_desc,
                                                  pos_weight,
                                                  reduction,
                                                  workspace_ptr,
                                                  workspace_size,
                                                  output_desc,
                                                  output));
F
fwenguang 已提交
4514 4515 4516
}

/* static */ void MLUCnnl::BceWithLogitsBackward(
4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530
    const ExecutionContext& ctx,
    cnnlBceWithLogitsReduction_t reduction,
    const cnnlTensorDescriptor_t grad_desc,
    const void* grad,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    const cnnlTensorDescriptor_t target_desc,
    const void* target,
    const cnnlTensorDescriptor_t weight_desc,
    const void* weight,
    const cnnlTensorDescriptor_t pos_weight_desc,
    const void* pos_weight,
    const cnnlTensorDescriptor_t diff_input_desc,
    void* diff_input) {
F
fwenguang 已提交
4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetBceWithLogitsBackwardWorkspaceSize(
      handle, target_desc, weight_desc, pos_weight_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlBceWithLogitsBackward(handle,
                                                       grad_desc,
                                                       grad,
                                                       input_desc,
                                                       input,
                                                       target_desc,
                                                       target,
                                                       weight_desc,
                                                       weight,
                                                       pos_weight_desc,
                                                       pos_weight,
                                                       reduction,
                                                       workspace_ptr,
                                                       workspace_size,
                                                       diff_input_desc,
                                                       diff_input));
F
fwenguang 已提交
4558 4559
}

4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629
/* static */ void MLUCnnl::RoiAlign(const ExecutionContext& ctx,
                                    const int pooled_height,
                                    const int pooled_width,
                                    const int sampling_ratio,
                                    const float spatial_scale,
                                    const bool aligned,
                                    const cnnlTensorDescriptor_t input_desc,
                                    const void* input,
                                    const cnnlTensorDescriptor_t boxes_desc,
                                    const void* boxes,
                                    const cnnlTensorDescriptor_t output_desc,
                                    void* output) {
  cnnlRoiAlignDescriptor_t roialign_desc;

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlCreateRoiAlignDescriptor(&roialign_desc));
  const int pool_mode = 1;  // average pooling mode
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetRoiAlignDescriptor_v2(roialign_desc,
                                                          pooled_height,
                                                          pooled_width,
                                                          sampling_ratio,
                                                          spatial_scale,
                                                          pool_mode,
                                                          aligned));

  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlRoiAlign_v2(handle,
                                             roialign_desc,
                                             input_desc,
                                             input,
                                             boxes_desc,
                                             boxes,
                                             output_desc,
                                             output,
                                             nullptr,
                                             nullptr,
                                             nullptr,
                                             nullptr));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlDestroyRoiAlignDescriptor(roialign_desc));
}

/* static */ void MLUCnnl::RoiAlignBackward(
    const ExecutionContext& ctx,
    const int sampling_ratio,
    const float spatial_scale,
    const bool aligned,
    const cnnlTensorDescriptor_t grads_desc,
    const void* grads,
    const cnnlTensorDescriptor_t boxes_desc,
    const void* boxes,
    const cnnlTensorDescriptor_t grads_image_desc,
    void* grads_image) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  const int pool_mode = 1;  // average pooling mode
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlRoiAlignBackward_v2(handle,
                                                     grads_desc,
                                                     grads,
                                                     boxes_desc,
                                                     boxes,
                                                     nullptr,
                                                     nullptr,
                                                     nullptr,
                                                     nullptr,
                                                     spatial_scale,
                                                     sampling_ratio,
                                                     aligned,
                                                     pool_mode,
                                                     grads_image_desc,
                                                     grads_image));
}

F
fwenguang 已提交
4630 4631
}  // namespace operators
}  // namespace paddle