sequence_expand_op.cu 6.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wanghaoshuang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wanghaoshuang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wanghaoshuang 已提交
14 15

#define EIGEN_USE_GPU
D
dzhwinter 已提交
16
#include <algorithm>
Y
Yi Wang 已提交
17
#include "paddle/fluid/operators/sequence_expand_op.h"
D
dzhwinter 已提交
18
#include "paddle/fluid/platform/cuda_helper.h"
W
wanghaoshuang 已提交
19

D
dzhwinter 已提交
20 21 22 23 24 25
namespace paddle {
namespace operators {

using LoDTensor = framework::LoDTensor;

template <typename T>
D
dzhwinter 已提交
26 27
__global__ void sequence_expand_kernel(const T* x_data, const size_t* x_lod,
                                       const size_t* ref_lod,
D
dzhwinter 已提交
28
                                       const size_t* offset,
D
dzhwinter 已提交
29 30 31 32 33 34 35 36 37
                                       const size_t lod_size,
                                       /* default=1,
                                          the instance length*/
                                       const int x_item_length, T* out_data) {
  int bid = blockIdx.x;
  if (bid >= lod_size - 1) return;

  int x_item_count = x_lod[bid + 1] - x_lod[bid];
  int repeats = ref_lod[bid + 1] - ref_lod[bid];
D
dzhwinter 已提交
38
  int out_offset = static_cast<int>(offset[bid]);
D
dzhwinter 已提交
39 40 41 42 43 44 45 46
  int x_offset = x_lod[bid];
  for (int tid_z = threadIdx.z; tid_z < repeats; tid_z += blockDim.z) {
    for (int tid_y = threadIdx.y; tid_y < x_item_count; tid_y += blockDim.y) {
      for (int tid_x = threadIdx.x; tid_x < x_item_length;
           tid_x += blockDim.x) {
        out_data[(out_offset + tid_z * x_item_count + tid_y) * x_item_length +
                 tid_x] = x_data[(x_offset + tid_y) * x_item_length + tid_x];
      }
D
dzhwinter 已提交
47 48
    }
  }
D
dzhwinter 已提交
49
}
D
dzhwinter 已提交
50

D
dzhwinter 已提交
51
template <typename T>
D
dzhwinter 已提交
52 53 54 55 56 57
__global__ void sequence_expand_grad_kernel(
    const T* dout_data, const size_t* ref_lod, const size_t* dx_lod,
    const size_t* offset, const size_t lod_size,
    /* default=1,
       the instance length*/
    const int x_item_length, T* dx_data) {
D
dzhwinter 已提交
58 59 60 61
  int bid = blockIdx.x;
  if (bid >= lod_size - 1) return;
  int x_item_count = dx_lod[bid + 1] - dx_lod[bid];
  int repeats = ref_lod[bid + 1] - ref_lod[bid];
D
dzhwinter 已提交
62
  int out_offset = static_cast<int>(offset[bid]);
D
dzhwinter 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75
  int x_offset = dx_lod[bid];

  for (int tid_z = threadIdx.z; tid_z < repeats; tid_z += blockDim.z) {
    for (int tid_y = threadIdx.y; tid_y < x_item_count; tid_y += blockDim.y) {
      for (int tid_x = threadIdx.x; tid_x < x_item_length;
           tid_x += blockDim.x) {
        platform::CudaAtomicAdd(
            &dx_data[(x_offset + tid_y) * x_item_length + tid_x],
            dout_data[(out_offset + tid_z * x_item_count + tid_y) *
                          x_item_length +
                      tid_x]);
      }
    }
D
dzhwinter 已提交
76 77 78
  }
}

D
dzhwinter 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91
void GetOutputOffset(const framework::Vector<size_t>& x_lod,
                     const framework::Vector<size_t>& ref_lod,
                     framework::Vector<size_t>& out_offset) {
  size_t offset = 0;
  int lod_size = static_cast<int>(x_lod.size());
  for (int i = 0; i < static_cast<int>(x_lod.size()); ++i) {
    out_offset[i] = offset;
    if (i < lod_size - 1) {
      offset += (ref_lod[i + 1] - ref_lod[i]) * (x_lod[i + 1] - x_lod[i]);
    }
  }
}

D
dzhwinter 已提交
92
template <typename T>
D
dzhwinter 已提交
93
struct SequenceExpandFunctor<platform::CUDADeviceContext, T> {
D
dzhwinter 已提交
94 95 96 97 98
  void operator()(
      const platform::CUDADeviceContext& context, const LoDTensor& x,
      const framework::Vector<size_t>& x_lod,   /*expand source lod*/
      const framework::Vector<size_t>& ref_lod, /*expand referenced lod*/
      LoDTensor* out) {
D
dzhwinter 已提交
99
    int x_item_length = x.numel() / x.dims()[0];
D
dzhwinter 已提交
100 101 102
    framework::Vector<size_t> out_offset(x_lod.size());
    GetOutputOffset(x_lod, ref_lod, out_offset);

D
dzhwinter 已提交
103 104 105
    int thread_x = std::min(32, std::max(static_cast<int>(ref_lod.size()), 16));
    int thread_y = 16;
    int thread_z = 1024 / thread_x / thread_y;
D
dzhwinter 已提交
106 107
    int block_x = static_cast<int>(ref_lod.size());
    dim3 block_size(thread_x, thread_y, thread_z);
D
dzhwinter 已提交
108
    dim3 grid_size(block_x, 1);
D
dzhwinter 已提交
109

D
dzhwinter 已提交
110
    sequence_expand_kernel<<<grid_size, block_size, 0, context.stream()>>>(
D
dzhwinter 已提交
111
        x.data<T>(), x_lod.CUDAData(context.GetPlace()),
D
dzhwinter 已提交
112 113
        ref_lod.CUDAData(context.GetPlace()),
        out_offset.CUDAData(context.GetPlace()), x_lod.size(), x_item_length,
D
dzhwinter 已提交
114
        out->mutable_data<T>(context.GetPlace()));
D
dzhwinter 已提交
115
  }
D
dzhwinter 已提交
116
};
D
dzhwinter 已提交
117

D
dzhwinter 已提交
118 119
template <typename T>
struct SequenceExpandGradFunctor<platform::CUDADeviceContext, T> {
D
dzhwinter 已提交
120
  void operator()(const platform::CUDADeviceContext& context,
D
dzhwinter 已提交
121 122 123 124
                  const LoDTensor& dout,
                  const framework::Vector<size_t>& x_lod, /*expand source lod*/
                  const framework::Vector<size_t>& ref_lod, /*expand based lod*/
                  LoDTensor* dx) {
D
dzhwinter 已提交
125
    int x_item_length = framework::product(dx->dims()) / dx->dims()[0];
D
dzhwinter 已提交
126 127 128
    framework::Vector<size_t> out_offset(x_lod.size());
    GetOutputOffset(x_lod, ref_lod, out_offset);

D
dzhwinter 已提交
129 130 131
    int thread_x = std::min(32, std::max(static_cast<int>(ref_lod.size()), 16));
    int thread_y = 16;
    int thread_z = 1024 / thread_x / thread_y;
D
dzhwinter 已提交
132 133
    int block_x = static_cast<int>(ref_lod.size());
    dim3 block_size(thread_x, thread_y, thread_z);
D
dzhwinter 已提交
134
    dim3 grid_size(block_x, 1);
D
dzhwinter 已提交
135 136
    sequence_expand_grad_kernel<<<grid_size, block_size, 0, context.stream()>>>(
        dout.data<T>(), ref_lod.CUDAData(context.GetPlace()),
D
dzhwinter 已提交
137 138
        x_lod.CUDAData(context.GetPlace()),
        out_offset.CUDAData(context.GetPlace()), ref_lod.size(), x_item_length,
D
dzhwinter 已提交
139
        dx->mutable_data<T>(context.GetPlace()));
D
dzhwinter 已提交
140 141
  }
};
D
dzhwinter 已提交
142 143 144 145

}  // namespace operators
}  // namespace paddle

W
wanghaoshuang 已提交
146
namespace ops = paddle::operators;
Q
QI JUN 已提交
147
REGISTER_OP_CUDA_KERNEL(
W
wanghaoshuang 已提交
148
    sequence_expand,
Y
yangyaming 已提交
149 150 151 152
    ops::SequenceExpandKernel<paddle::platform::CUDADeviceContext, float>,
    ops::SequenceExpandKernel<paddle::platform::CUDADeviceContext, double>,
    ops::SequenceExpandKernel<paddle::platform::CUDADeviceContext, int>,
    ops::SequenceExpandKernel<paddle::platform::CUDADeviceContext, int64_t>);
Q
QI JUN 已提交
153
REGISTER_OP_CUDA_KERNEL(
W
wanghaoshuang 已提交
154
    sequence_expand_grad,
Y
yangyaming 已提交
155 156 157 158 159
    ops::SequenceExpandGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::SequenceExpandGradKernel<paddle::platform::CUDADeviceContext, double>,
    ops::SequenceExpandGradKernel<paddle::platform::CUDADeviceContext, int>,
    ops::SequenceExpandGradKernel<paddle::platform::CUDADeviceContext,
                                  int64_t>);