lookup_table_op.cc 9.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/lookup_table_op.h"
H
Huihuang Zheng 已提交
16 17 18 19

#include <memory>

#include "paddle/fluid/framework/no_need_buffer_vars_inference.h"
T
tangwei12 已提交
20
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yi Wang 已提交
21
#include "paddle/fluid/framework/var_type_inference.h"
22
#include "paddle/fluid/platform/bfloat16.h"
23 24 25 26 27 28 29 30

namespace paddle {
namespace operators {

class LookupTableOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

31
  void InferShape(framework::InferShapeContext* ctx) const override {
32 33 34
    OP_INOUT_CHECK(ctx->HasInput("W"), "Input", "W", "LookupTable");
    OP_INOUT_CHECK(ctx->HasInput("Ids"), "Input", "Ids", "LookupTable");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "LookupTable");
Q
Qiao Longfei 已提交
35 36 37

    auto table_dims = ctx->GetInputDim("W");
    auto ids_dims = ctx->GetInputDim("Ids");
38
    int ids_rank = ids_dims.size();
39
    VLOG(5) << "ids rank is " << ids_rank << std::endl;
40 41
    PADDLE_ENFORCE_EQ(
        table_dims.size(), 2,
42 43 44 45 46
        platform::errors::InvalidArgument(
            "ShapeError: The dimensions of the 'lookup table' must be 2. "
            "But received lookup table's dimensions = %d, "
            "lookup table's shape = [%s].",
            table_dims.size(), table_dims));
47 48
    PADDLE_ENFORCE_EQ(
        ids_dims[ids_rank - 1], 1,
49 50 51 52
        platform::errors::InvalidArgument(
            "ShapeError: The last dimensions of the 'Ids' tensor must be 1. "
            "But received Ids's last dimensions = %d, Ids's shape = [%s].",
            ids_dims[ids_rank - 1], ids_dims));
53

54 55 56 57
    auto output_dims =
        framework::vectorize(framework::slice_ddim(ids_dims, 0, ids_rank - 1));
    output_dims.push_back(table_dims[1]);
    ctx->SetOutputDim("Out", framework::make_ddim(output_dims));
58 59 60 61 62

    if (ctx->GetOutputsVarType("Out")[0] ==
        framework::proto::VarType::LOD_TENSOR) {
      ctx->ShareLoD("Ids", /*->*/ "Out");
    }
63
  }
Y
Yu Yang 已提交
64

65
 protected:
66
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
67
      const framework::ExecutionContext& ctx) const override {
68
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "W");
Q
qiaolongfei 已提交
69
    return framework::OpKernelType(data_type, ctx.device_context());
Y
Yu Yang 已提交
70
  }
71 72 73 74
};

class LookupTableOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
75
  void Make() override {
76
    AddInput("W",
C
chengduoZH 已提交
77
             "(Tensor) The input represents embedding tensors, "
K
kexinzhao 已提交
78
             "which is a learnable parameter.");
79
    AddInput("Ids",
80
             "An input with type int64 "
81
             "contains the ids to be looked up in W. "
82
             "The last dimension size must be 1.");
83
    AddOutput("Out", "The lookup results, which have the same type as W.");
C
chengduoZH 已提交
84
    AddAttr<bool>("is_sparse",
C
chengduoZH 已提交
85
                  "(boolean, default false) "
C
chengduoZH 已提交
86
                  "Sparse update.")
C
chengduoZH 已提交
87
        .SetDefault(false);
88 89 90
    AddAttr<bool>("is_distributed",
                  "(boolean, default false) distributed lookup table.")
        .SetDefault(false);
C
chengduoZH 已提交
91 92 93 94 95
    AddAttr<int64_t>("padding_idx",
                     "(int64, default -1) "
                     "If the value is -1, it makes no effect to lookup. "
                     "Otherwise the given value indicates padding the output "
                     "with zeros whenever lookup encounters it in Ids.")
96
        .SetDefault(kNoPadding);
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

    // for parameter training config
    AddAttr<bool>("remote_prefetch",
                  "pull sparse params from parameters, this can only be used "
                  "in distributed training")
        .SetDefault(false);

    AddAttr<std::string>("entry_config",
                         "embedding sparse feature entry config, "
                         " probability entry / counting "
                         " this can only be used in distributed training"
                         "entry")
        .SetDefault("");

    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training.")
        .SetDefault(false);

    AddAttr<std::string>("entry",
                         "(std::string, default "
                         ") for entry attribute.")
        .SetDefault("none");

T
Thunderbrook 已提交
121 122 123 124 125
    AddAttr<std::string>("table_class",
                         "(std::string, default "
                         ") for table_class.")
        .SetDefault("none");

126 127 128 129 130 131 132
    AddAttr<std::vector<std::string>>(
        "table_names",
        "(string vector, the split table names that will be fetched from "
        "parameter server)"
        "in the order of input variables for mapping")
        .SetDefault({});
    AddAttr<int>("trainer_id", "trainer id from 0 ~ worker_num.").SetDefault(0);
M
minqiyang 已提交
133 134 135 136
    AddAttr<bool>("grad_inplace",
                  "(boolean, default false) "
                  "If the grad op reuse the input's variable.")
        .SetDefault(false);
Q
Qiao Longfei 已提交
137 138 139 140
    AddAttr<std::vector<std::string>>(
        "epmap",
        "(string vector, default 127.0.0.1:6164)"
        "Server endpoints in the order of input variables for mapping")
Q
Qiao Longfei 已提交
141
        .SetDefault({});
142 143 144
    AddAttr<std::vector<int64_t>>("height_sections",
                                  "Height for each output SelectedRows.")
        .SetDefault(std::vector<int64_t>({}));
C
chengduoZH 已提交
145
    AddComment(R"DOC(
C
chengduoZH 已提交
146
Lookup Table Operator.
C
chengduoZH 已提交
147

C
chengduoZH 已提交
148
This operator is used to perform lookups on the parameter W,
149
then concatenated into a dense tensor.
150

151 152
The input Ids can carry the LoD (Level of Details) information,
or not. And the output only shares the LoD information with input Ids.
C
chengduoZH 已提交
153 154 155 156 157

)DOC");
  }
};

158
DECLARE_NO_NEED_BUFFER_VARS_INFERER(LookupTableGradOpNoBufferVarsInferer, "W");
H
Huihuang Zheng 已提交
159

H
hong 已提交
160 161
template <typename T>
class LookupTableGradOpMaker : public framework::SingleGradOpMaker<T> {
H
Huihuang Zheng 已提交
162
 public:
H
hong 已提交
163
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
H
Huihuang Zheng 已提交
164 165

 protected:
166
  void Apply(GradOpPtr<T> op) const override {
H
Huihuang Zheng 已提交
167 168
    op->SetType("lookup_table_grad");

H
hong 已提交
169 170 171
    op->SetInput("W", this->Input("W"));
    op->SetInput("Ids", this->Input("Ids"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
H
Huihuang Zheng 已提交
172

H
hong 已提交
173
    op->SetOutput(framework::GradVarName("W"), this->InputGrad("W"));
H
Huihuang Zheng 已提交
174

H
hong 已提交
175
    op->SetAttrMap(this->Attrs());
H
Huihuang Zheng 已提交
176 177 178
  }
};

179 180 181 182
class LookupTableOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

183
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
184 185
    auto table_dims = ctx->GetInputDim("W");
    ctx->SetOutputDim(framework::GradVarName("W"), table_dims);
186
  }
Y
Yu Yang 已提交
187

188
 protected:
189
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
190
      const framework::ExecutionContext& ctx) const override {
191 192
    auto data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
Q
qiaolongfei 已提交
193
    return framework::OpKernelType(data_type, ctx.device_context());
Y
Yu Yang 已提交
194
  }
195 196
};

197 198
class LookupTableOpGradVarTypeInference : public framework::VarTypeInference {
 public:
M
minqiyang 已提交
199
  void operator()(framework::InferVarTypeContext* ctx) const override {
200
    auto out_var_name = framework::GradVarName("W");
M
minqiyang 已提交
201
    auto attr = ctx->GetAttr("is_sparse");
202
    bool is_sparse = BOOST_GET(bool, attr);
203
    if (is_sparse) {
M
minqiyang 已提交
204 205
      VLOG(3) << "lookup_table_grad op " << framework::GradVarName("W")
              << " is set to SelectedRows";
206 207
      ctx->SetOutputType(out_var_name,
                         framework::proto::VarType::SELECTED_ROWS);
208
    } else {
M
minqiyang 已提交
209 210
      VLOG(3) << "lookup_table_grad op " << framework::GradVarName("W")
              << " is set to LoDTensor";
211
      ctx->SetOutputType(out_var_name, framework::proto::VarType::LOD_TENSOR);
212
    }
213
    ctx->SetOutputDataType(out_var_name, ctx->GetInputDataType("W"));
214 215 216
  }
};

217 218 219 220
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
Huihuang Zheng 已提交
221
REGISTER_OPERATOR(lookup_table, ops::LookupTableOp, ops::LookupTableOpMaker,
H
hong 已提交
222 223
                  ops::LookupTableGradOpMaker<paddle::framework::OpDesc>,
                  ops::LookupTableGradOpMaker<paddle::imperative::OpBase>);
H
Huihuang Zheng 已提交
224

225
REGISTER_OPERATOR(lookup_table_grad, ops::LookupTableOpGrad,
226
                  ops::LookupTableGradOpNoBufferVarsInferer,
227 228 229
                  ops::LookupTableOpGradVarTypeInference);

REGISTER_OP_CPU_KERNEL(lookup_table, ops::LookupTableKernel<float>,
230
                       ops::LookupTableKernel<double>,
231 232
                       ops::LookupTableKernel<int8_t>,
                       ops::LookupTableKernel<paddle::platform::bfloat16>);
233
REGISTER_OP_CPU_KERNEL(lookup_table_grad, ops::LookupTableGradKernel<float>,
234 235
                       ops::LookupTableGradKernel<double>,
                       ops::LookupTableGradKernel<paddle::platform::bfloat16>);
T
tangwei12 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248

/* ==========================  register checkpoint ===========================*/

REGISTER_OP_VERSION(lookup_table)
    .AddCheckpoint(
        R"ROC(
      Upgrade lookup_table add 1 attribute [entry_config].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "entry_config",
            "(std::string) embedding sparse feature entry config.", ""));

/* ========================================================================== */