conv_op.cc 9.7 KB
Newer Older
C
chengduoZH 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

3 4 5
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
C
chengduoZH 已提交
6

7
   http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

9 10 11 12 13
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */
C
chengduoZH 已提交
14

C
chengduoZH 已提交
15
#include "paddle/operators/conv_op.h"
C
chengduoZH 已提交
16 17 18 19

namespace paddle {
namespace operators {

C
chengduoZH 已提交
20
void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
21
  PADDLE_ENFORCE(ctx->HasInput("Input"),
C
chengduoZH 已提交
22
                 "Input(Input) of ConvOp should not be null.");
C
chengduoZH 已提交
23
  PADDLE_ENFORCE(ctx->HasInput("Filter"),
C
chengduoZH 已提交
24
                 "Input(Filter) of ConvOp should not be null.");
C
chengduoZH 已提交
25
  PADDLE_ENFORCE(ctx->HasOutput("Output"),
C
chengduoZH 已提交
26
                 "Output(Output) of ConvOp should not be null.");
C
chengduoZH 已提交
27 28 29 30 31 32

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
33
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
C
chengduoZH 已提交
34 35 36
  int input_channels = in_dims[1];
  int output_channels = filter_dims[0];

C
chengduoZH 已提交
37 38
  PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5,
                 "Conv intput should be 4-D or 5-D tensor.");
C
chengduoZH 已提交
39 40 41 42 43 44 45 46 47
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
      "Conv input dimension and filter dimension should be the same.");
  PADDLE_ENFORCE(
      in_dims.size() - strides.size() == 2U,
      "Conv input dimension and strides dimension should be consistent.");
  PADDLE_ENFORCE_EQ(
      paddings.size(), strides.size(),
      "Conv paddings dimension and Conv strides dimension should be the same.");
C
chengduoZH 已提交
48 49
  PADDLE_ENFORCE_EQ(input_channels, filter_dims[1] * groups,
                    "The number of input channels should be equal to filter "
C
chengduoZH 已提交
50
                    "channels * groups.");
C
chengduoZH 已提交
51 52 53 54 55 56
  PADDLE_ENFORCE_EQ(
      output_channels % groups, 0,
      "The number of output channels should be divided by groups.");

  std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
  for (size_t i = 0; i < paddings.size(); ++i) {
C
chengduoZH 已提交
57
    output_shape.push_back(OutputSize(in_dims[i + 2], filter_dims[i + 2],
C
chengduoZH 已提交
58 59
                                      dilations[i], paddings[i], paddings[i],
                                      strides[i]));
C
chengduoZH 已提交
60
  }
61
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
C
chengduoZH 已提交
62 63
}

C
chengduoZH 已提交
64 65 66 67 68
Conv2DOpMaker::Conv2DOpMaker(framework::OpProto* proto,
                             framework::OpAttrChecker* op_checker)
    : OpProtoAndCheckerMaker(proto, op_checker) {
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
69 70 71 72
      "(Tensor) The input tensor of convolution operator. "
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
73
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
74
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
75 76
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
77 78
           "H is the height of the filter, and W is the width of the filter. "
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
79 80
           "input image channels divided by the groups.");
  AddOutput("Output",
C
fix doc  
chengduoZH 已提交
81 82 83
            "(Tensor) The output tensor of convolution operator. "
            "The format of output tensor is also NCHW.");
  AddAttr<std::vector<int>>("strides", "strides of convolution operator.")
C
chengduoZH 已提交
84
      .SetDefault({1, 1});
C
fix doc  
chengduoZH 已提交
85
  AddAttr<std::vector<int>>("paddings", "paddings of convolution operator.")
C
chengduoZH 已提交
86 87 88
      .SetDefault({0, 0});
  AddAttr<int>(
      "groups",
C
fix doc  
chengduoZH 已提交
89 90 91 92 93
      "(int default:1), the group size of convolution operator. "
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
94
      .SetDefault(1);
C
chengduoZH 已提交
95 96 97 98
  AddAttr<std::vector<int>>("dilations",
                            "(vector default:{1, 1}), the dilations of "
                            "convolution operator.")
      .SetDefault(std::vector<int>{1, 1});
C
chengduoZH 已提交
99
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
100 101
Convolution Operator.

C
chengduoZH 已提交
102 103 104
The convolution operation calculates the output based on the input, filter
and strides, paddings, groups parameters. The size of each dimension of the
parameters is checked in the infer-shape.
C
chengduoZH 已提交
105
Input(Input, Filter) and output(Output) are in NCHW format. Where N is batch
C
fix doc  
chengduoZH 已提交
106 107
size, C is the number of channels, H is the height of the feature, and W is
the width of the feature. Parameters(ksize, strides, paddings) are two elements.
C
chengduoZH 已提交
108 109 110 111 112 113 114 115 116 117 118 119
These two elements represent height and width, respectively.
The input(X) size and output(Out) size may be different.

Example:
  Input:
       Input shape: (N, C_in, H_in, W_in)
       Filter shape: (C_out, C_in, H_f, W_f)
  Output:
       Output shape: (N, C_out, H_out, W_out)
  where
       H_out = (H_in - filter_size[0] + 2 * paddings[0]) / strides[0] + 1;
       W_out = (W_in - filter_size[1] + 2 * paddings[1]) / strides[1] + 1;
C
chengduoZH 已提交
120
)DOC");
C
chengduoZH 已提交
121 122 123 124 125 126 127
}

Conv3DOpMaker::Conv3DOpMaker(framework::OpProto* proto,
                             framework::OpAttrChecker* op_checker)
    : OpProtoAndCheckerMaker(proto, op_checker) {
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
128
      "(Tensor) The input tensor of convolution operator. "
C
chengduoZH 已提交
129
      "The format of input tensor is NCDHW. Where N is batch size, C is the "
C
fix doc  
chengduoZH 已提交
130 131 132
      "number of channels, D is the depth of the feature, H is the height of "
      "the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
133
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
134
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
135 136
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
137 138 139
           "D is the depth of the filter, H is the height of the filter, and W "
           "is the width of the filter."
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
140 141
           "input image channels divided by the groups.");
  AddOutput("Output",
C
fix doc  
chengduoZH 已提交
142
            "(Tensor) The output tensor of convolution operator."
C
chengduoZH 已提交
143
            "The format of output tensor is also NCDHW.");
C
fix doc  
chengduoZH 已提交
144 145
  AddAttr<std::vector<int>>(
      "strides",
C
chengduoZH 已提交
146
      "(vector, default:{0, 0, 0}), the strides of convolution operator.")
C
chengduoZH 已提交
147
      .SetDefault({1, 1, 1});
C
fix doc  
chengduoZH 已提交
148 149
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
150
      "(vector, default:{0, 0, 0}), the paddings of convolution operator.")
C
chengduoZH 已提交
151 152 153
      .SetDefault({0, 0, 0});
  AddAttr<int>(
      "groups",
C
fix doc  
chengduoZH 已提交
154 155 156 157 158
      "(int default:1), the group size of convolution operator. "
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
159
      .SetDefault(1);
C
chengduoZH 已提交
160 161 162 163 164
  AddAttr<std::vector<int>>("dilations",
                            "(vector default:{1, 1, 1}), the dilations of "
                            "convolution operator. Currently, conv3d doesn't "
                            "support dilation.")
      .SetDefault(std::vector<int>{1, 1, 1});
C
fix doc  
chengduoZH 已提交
165

C
chengduoZH 已提交
166
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
167 168
Convolution3D Operator.

C
chengduoZH 已提交
169 170 171
The convolution operation calculates the output based on the input, filter
and strides, paddings, groups parameters. The size of each dimension of the
parameters is checked in the infer-shape.
C
fix doc  
chengduoZH 已提交
172
Input(Input, Filter) and output(Output) are in NCDHW format. Where N is batch
C
fix doc  
chengduoZH 已提交
173 174 175
size, C is the number of channels,D is the depth of the feature, H is the height of
the feature, and W is the width of the feature. Parameters(ksize, strides, paddings)
are three elements. These three elements represent depth, height and width, respectively.
C
fix doc  
chengduoZH 已提交
176 177 178 179 180 181 182 183 184 185 186 187
The input(X) size and output(Out) size may be different.

Example:
  Input:
       Input shape: (N, C_in, D_in, H_in, W_in)
       Filter shape: (C_out, C_in, D_f, H_f, W_f)
  Output:
       Output shape: (N, C_out, D_out, H_out, W_out)
  where
       D_out = (D_in - filter_size[0] + 2 * paddings[0]) / strides[0] + 1;
       H_out = (H_in - filter_size[1] + 2 * paddings[1]) / strides[1] + 1;
       W_out = (W_in - filter_size[2] + 2 * paddings[2]) / strides[2] + 1;
C
chengduoZH 已提交
188 189 190
)DOC");
}

C
chengduoZH 已提交
191 192 193 194 195 196 197 198 199 200 201
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

C
chengduoZH 已提交
202 203 204 205
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
C
chengduoZH 已提交
206 207 208 209 210 211
REGISTER_OP(conv2d, ops::ConvOp, ops::Conv2DOpMaker, conv2d_grad,
            ops::ConvOpGrad);
namespace ops = paddle::operators;
REGISTER_OP(conv3d, ops::ConvOp, ops::Conv3DOpMaker, conv3d_grad,
            ops::ConvOpGrad);

C
chengduoZH 已提交
212 213
REGISTER_OP_CPU_KERNEL(conv2d,
                       ops::GemmConvKernel<paddle::platform::CPUPlace, float>);
C
chengduoZH 已提交
214
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
215
    conv2d_grad, ops::GemmConvGradKernel<paddle::platform::CPUPlace, float>);
C
chengduoZH 已提交
216

C
chengduoZH 已提交
217 218
REGISTER_OP_CPU_KERNEL(conv3d,
                       ops::GemmConvKernel<paddle::platform::CPUPlace, float>);
C
chengduoZH 已提交
219
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
220
    conv3d_grad, ops::GemmConvGradKernel<paddle::platform::CPUPlace, float>);