operator.cc 16.6 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <algorithm>
T
tensor-tang 已提交
16
#include <atomic>
D
dzhwinter 已提交
17

18
#include "paddle/framework/data_transform.h"
D
dzhwinter 已提交
19
#include "paddle/framework/executor.h"
20
#include "paddle/framework/lod_tensor_array.h"
D
dzhwinter 已提交
21
#include "paddle/framework/operator.h"
22
#include "paddle/framework/shape_inference.h"
23
#include "paddle/framework/var_type.h"
Q
Qiao Longfei 已提交
24 25 26 27

namespace paddle {
namespace framework {

28
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
29
  auto& ins = Inputs(name);
Y
Yu Yang 已提交
30
  PADDLE_ENFORCE_LE(ins.size(), 1UL,
31 32
                    "Operator %s's input %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
33
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
34 35
}

Y
Yu Yang 已提交
36 37
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
38
  auto it = inputs_.find(name);
39 40
  PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
                 type_, name);
Y
Yu Yang 已提交
41
  return it->second;
Y
Yan Chunwei 已提交
42 43
}

44
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
45
  auto& outs = Outputs(name);
Y
Yu Yang 已提交
46
  PADDLE_ENFORCE_LE(outs.size(), 1UL,
47 48
                    "Operator %s's output %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
49
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
50 51
}

Y
Yu Yang 已提交
52 53
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
54
  auto it = outputs_.find(name);
55 56
  PADDLE_ENFORCE(it != outputs_.end(),
                 "Operator %s does not have an output called %s.", type_, name);
Y
Yu Yang 已提交
57
  return it->second;
Y
Yan Chunwei 已提交
58 59
}

Q
Qiao Longfei 已提交
60 61
std::string OperatorBase::DebugString() const {
  std::stringstream ss;
Y
Yu Yang 已提交
62
  ss << "Op(" << type_ << "), inputs:{";
Y
Yu Yang 已提交
63 64
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
Y
Yu Yang 已提交
65 66 67 68 69 70
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
      ss << input.second[i];
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
71
    }
Y
Yu Yang 已提交
72
    ss << "]";
Y
Yu Yang 已提交
73 74
    ++it;
    if (it != inputs_.end()) {
75 76
      ss << ", ";
    }
Q
Qiao Longfei 已提交
77
  }
Y
Yu Yang 已提交
78
  ss << "}, outputs:{";
Y
Yu Yang 已提交
79 80
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
81 82 83 84 85 86
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
      ss << output.second[i];
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
87
    }
Y
Yu Yang 已提交
88
    ss << "]";
Y
Yu Yang 已提交
89 90
    ++it;
    if (it != outputs_.end()) {
91 92
      ss << ", ";
    }
Q
Qiao Longfei 已提交
93
  }
Y
Yu Yang 已提交
94
  ss << "}.";
Q
Qiao Longfei 已提交
95 96 97
  return ss.str();
}

D
dongzhihong 已提交
98 99
void OperatorBase::Rename(const std::string& old_name,
                          const std::string& new_name) {
Y
Yu Yang 已提交
100 101 102 103 104 105 106
  for (auto& input : inputs_) {
    std::replace(input.second.begin(), input.second.end(), old_name, new_name);
  }
  for (auto& output : outputs_) {
    std::replace(output.second.begin(), output.second.end(), old_name,
                 new_name);
  }
D
dongzhihong 已提交
107 108
}

Y
Yu Yang 已提交
109
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
110 111
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
112 113
                           const AttributeMap& attrs)
    : type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs) {
114 115
  GenerateTemporaryNames();
  CheckAllInputOutputSet();
Y
Yu Yang 已提交
116
}
117

Q
qijun 已提交
118 119
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
120
  for (auto& o : inputs_) {
Q
qijun 已提交
121 122 123 124 125 126
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
127 128 129 130 131 132 133 134 135 136
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
Y
Yu Yang 已提交
137
  auto& info = OpInfoMap::Instance().Get(Type());
Y
Yu Yang 已提交
138 139

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
140
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
141 142 143 144 145 146 147 148 149
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
150 151
}

152 153 154
void OperatorBase::CheckAllInputOutputSet() const {
  auto& info_map = OpInfoMap::Instance();
  auto* op_info = info_map.GetNullable(Type());
Y
Yu Yang 已提交
155
  if (op_info == nullptr || op_info->proto_ == nullptr) return;
156 157 158

  for (auto& in : op_info->Proto().inputs()) {
    PADDLE_ENFORCE(inputs_.find(in.name()) != inputs_.end(),
Y
Yu Yang 已提交
159
                   "Type %s's input %s is not set", Type(), in.name());
160 161 162 163
  }

  for (auto& out : op_info->Proto().outputs()) {
    PADDLE_ENFORCE(outputs_.find(out.name()) != outputs_.end(),
Y
Yu Yang 已提交
164
                   "Type %s's output %s is not set", Type(), out.name());
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

Q
QI JUN 已提交
181 182 183 184 185 186 187
static const Tensor* GetTensorFromVar(const Variable* var) {
  const Tensor* t = nullptr;
  if (var->IsType<LoDTensor>()) {
    t = &(var->Get<LoDTensor>());
  } else if (var->IsType<SelectedRows>()) {
    t = &(var->Get<SelectedRows>().value());
  } else {
Y
Yang Yang 已提交
188 189
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
                 var->Type().name());
Q
QI JUN 已提交
190 191 192 193 194 195 196 197 198 199 200
  }
  return t;
}

static Tensor* GetMutableTensorFromVar(Variable* var) {
  Tensor* t = nullptr;
  if (var->IsType<LoDTensor>()) {
    t = var->GetMutable<LoDTensor>();
  } else if (var->IsType<SelectedRows>()) {
    t = var->GetMutable<SelectedRows>()->mutable_value();
  } else {
Y
Yang Yang 已提交
201 202
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
                 var->Type().name());
Q
QI JUN 已提交
203 204 205 206
  }
  return t;
}

207
template <>
208
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
209
  auto* var = InputVar(name);
210
  return var == nullptr ? nullptr : GetTensorFromVar(var);
211 212 213
}

template <>
214
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
215 216 217 218
    const std::string& name) const {
  auto names = op().Inputs(name);
  std::vector<const Tensor*> res;
  res.reserve(names.size());
219 220 221 222 223
  std::transform(names.begin(), names.end(), std::back_inserter(res),
                 [&](const std::string& sub_name) {
                   auto var = scope_.FindVar(sub_name);
                   return var == nullptr ? nullptr : GetTensorFromVar(var);
                 });
224 225 226 227
  return res;
}

template <>
228
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
229
  auto var = OutputVar(name);
Q
QI JUN 已提交
230
  return var == nullptr ? nullptr : GetMutableTensorFromVar(var);
231 232 233
}

template <>
234
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
235 236 237 238
    const std::string& name) const {
  auto names = op().Outputs(name);
  std::vector<Tensor*> res;
  res.reserve(names.size());
239 240
  std::transform(names.begin(), names.end(), std::back_inserter(res),
                 [&](const std::string& sub_name) {
241 242
                   auto var = scope_.FindVar(sub_name);
                   return var == nullptr ? nullptr
Q
QI JUN 已提交
243
                                         : GetMutableTensorFromVar(var);
244
                 });
245 246 247
  return res;
}

Y
Yu Yang 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
class RuntimeInferShapeContext : public InferShapeContext {
 public:
  RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}

  bool HasInput(const std::string& name) const override {
    auto& ins = Inputs(name);
    size_t length = ins.size();
    if (length == 0) {
      return false;
    }
    PADDLE_ENFORCE_EQ(length, 1UL, "Input %s should have more than one inputs",
                      name);
    auto ipt = ins[0];
    auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
    return var != nullptr;
  }

  bool HasOutput(const std::string& name) const override {
    auto& outs = Outputs(name);
    size_t length = outs.size();
    if (length == 0) {
      return false;
    }
    PADDLE_ENFORCE_EQ(length, 1UL, "Output %s should have more than one inputs",
                      name);
    auto ipt = outs[0];
    auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
    return var != nullptr;
  }

  bool HasInputs(const std::string& name) const override {
    auto inputs = op_.Inputs(name);
    if (inputs.empty()) {
      return false;
    }
    for (auto& input : inputs) {
      if (scope_.FindVar(input) == nullptr) {
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
    auto outputs = op_.Outputs(name);
    if (outputs.empty()) {
      return false;
    }
    for (auto& output : outputs) {
      if (scope_.FindVar(output) == nullptr) {
        return false;
      }
    }
    return true;
  }

  DDim GetInputDim(const std::string& name) const override {
    return GetDim(op_.Input(name));
  }

  void SetOutputDim(const std::string& name, const DDim& dim) override {
    SetDim(op_.Output(name), dim);
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

  const std::vector<std::string>& Inputs(
      const std::string& name) const override {
    return op_.Inputs(name);
  }

  const std::vector<std::string>& Outputs(
      const std::string& name) const override {
    return op_.Outputs(name);
  }

Q
Qiao Longfei 已提交
340 341 342 343 344 345 346 347 348 349 350 351 352 353
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
    PADDLE_ENFORCE_LT(i, Inputs(in).size());
    PADDLE_ENFORCE_LT(j, Outputs(out).size());
    Variable* in_var = scope_.FindVar(Inputs(in)[i]);
    Variable* out_var = scope_.FindVar(Outputs(out)[j]);
    if (!in_var->IsType<LoDTensor>()) return;
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
  }

354 355 356
  bool IsRuntime() const override { return true; }

 protected:
357 358 359 360 361 362 363
  DDim GetDim(const std::string& name) const override {
    Variable* var = scope_.FindVar(name);
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
Y
Yang Yang 已提交
364 365
      PADDLE_THROW("Variable %s type_id %s, expect LoDTensor/SelectedRows.",
                   name, var->Type().name());
366 367 368 369 370 371 372 373 374 375
    }
  }

  void SetDim(const std::string& name, const DDim& dim) override {
    Variable* var = scope_.FindVar(name);
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
Y
Yang Yang 已提交
376 377
      PADDLE_THROW("Variable %s type_id %s, expect LoDTensor/SelectedRows.",
                   name, var->Type().name());
378 379 380
    }
  }

381
  proto::VarDesc::VarType GetVarType(const std::string& name) const override {
382 383 384 385 386
    auto* var = scope_.FindVar(name);
    return ToVarType(var->Type());
  }

 private:
387 388 389 390
  const OperatorBase& op_;
  const Scope& scope_;
};

391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
const platform::DeviceContext* GetDeviceContext(
    framework::KernelTypePair& kernel_pair) {
  auto& actual_kernel_key = kernel_pair.first;
  auto& expected_kernel_key = kernel_pair.second;
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();

  if (platform::is_gpu_place(actual_kernel_key.place_) &&
      platform::is_cpu_place(expected_kernel_key.place_)) {
    return pool.Get(actual_kernel_key.place_);
  } else if (platform::is_cpu_place(actual_kernel_key.place_) &&
             platform::is_gpu_place(expected_kernel_key.place_)) {
    return pool.Get(expected_kernel_key.place_);
  } else {
    PADDLE_THROW(
        "Currently, model parallelism is only supported between CPU and CUDA");
  }
}

409
void OperatorWithKernel::Run(const Scope& scope,
D
dzhwinter 已提交
410
                             const platform::Place& place) const {
411 412
  RuntimeInferShapeContext infer_shape_ctx(*this, scope);
  this->InferShape(&infer_shape_ctx);
Y
Yu Yang 已提交
413 414
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto dev_ctx = pool.Get(place);
415 416 417 418 419

  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  if (kernels_iter == all_op_kernels.end()) {
Y
Yu Yang 已提交
420 421
    PADDLE_THROW(
        "There are no kernels which are registered in the %s operator.", type_);
422 423 424 425
  }

  // check if op[type] have kernel for kernel_key
  OpKernelMap& kernels = kernels_iter->second;
D
dzhwinter 已提交
426 427

  ExecutionContext ctx(*this, scope, *dev_ctx);
Q
Qiao Longfei 已提交
428 429 430
  auto actual_kernel_key = GetActualKernelType(ctx);
  auto expected_kernel_key = GetExpectedKernelType(actual_kernel_key);
  auto kernel_iter = kernels.find(expected_kernel_key);
431 432

  if (kernel_iter == kernels.end()) {
Q
Qiao Longfei 已提交
433 434
    PADDLE_THROW("The operator %s does not support %s", type_,
                 expected_kernel_key);
435 436
  }

437
  if (actual_kernel_key == expected_kernel_key) {
Q
QI JUN 已提交
438 439 440 441
    PADDLE_ENFORCE_EQ(actual_kernel_key.place_, expected_kernel_key.place_,
                      "Currently, model parallelism is only supported between "
                      "CPU and other devices. For example, multi-GPU model "
                      "parallelism will failed.");
442
  } else {
443
    auto kernel_pair = std::make_pair(actual_kernel_key, expected_kernel_key);
Q
QI JUN 已提交
444
    const DataTransformFn* trans_fun =
445
        DataTransformFnMap::Instance().GetNullable(kernel_pair);
Q
QI JUN 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458 459
    if (trans_fun) {
      auto input_vars = this->InputVars();
      // TODO(qijun) filter the input vars that do not need to be transformed

      // filter vars that has been transformed
      std::vector<std::string> need_trans;
      for (auto var_name : input_vars) {
        auto var_name_trans =
            var_name + framework::KernelTypeToString(expected_kernel_key);
        if (!scope.FindVar(var_name_trans)) {
          const_cast<Scope&>(scope).Var(var_name_trans);
          need_trans.push_back(var_name);
        }
      }
460

Q
QI JUN 已提交
461
      if (!need_trans.empty()) {
462
        auto trans_dev_ctx = GetDeviceContext(kernel_pair);
Q
QI JUN 已提交
463 464 465 466 467

        // Wait for transform starting
        dev_ctx->Wait();

        for (auto var_name : need_trans) {
D
dzhwinter 已提交
468
          (*trans_fun)(trans_dev_ctx, kernel_pair, *(scope.FindVar(var_name)),
Q
QI JUN 已提交
469 470 471 472
                       scope.FindVar(var_name + framework::KernelTypeToString(
                                                    expected_kernel_key)));
        }
        // Wait for data transform finishing
473
        trans_dev_ctx->Wait();
Q
QI JUN 已提交
474
      }
475
    }
476 477 478 479
  }

  kernel_iter->second->Compute(ctx);
}
Q
Qiao Longfei 已提交
480 481

OpKernelType OperatorWithKernel::GetActualKernelType(
Y
Yu Yang 已提交
482
    const ExecutionContext& ctx) const {
Q
QI JUN 已提交
483
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
Y
Yu Yang 已提交
484
}
Q
Qiao Longfei 已提交
485 486 487 488 489 490

OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const OpKernelType& actual_kernel_type) const {
  return actual_kernel_type;
}

491
proto::DataType OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
    const ExecutionContext& ctx) const {
  auto& scope = ctx.scope();
  int data_type = -1;
  for (auto& input : this->inputs_) {
    for (auto& ipt_name : input.second) {
      auto* var = scope.FindVar(ipt_name);
      if (var != nullptr) {
        const Tensor* t = nullptr;
        if (var->IsType<Tensor>()) {
          t = &var->Get<Tensor>();
        } else if (var->IsType<LoDTensor>()) {
          t = &var->Get<LoDTensor>();
        } else if (var->IsType<SelectedRows>()) {
          t = &(var->Get<SelectedRows>().value());
        }
        if (t != nullptr) {
          int tmp = static_cast<int>(ToDataType(t->type()));
          PADDLE_ENFORCE(tmp == data_type || data_type == -1,
                         "DataType of Paddle Op %s must be the same.", Type());
          data_type = tmp;
        }
      }
    }
  }
  PADDLE_ENFORCE(data_type != -1, "DataType should be indicated by input");
517
  return static_cast<proto::DataType>(data_type);
Y
Yu Yang 已提交
518
}
519

Q
Qiao Longfei 已提交
520
}  // namespace framework
L
liaogang 已提交
521
}  // namespace paddle