MKLDNNLayer.h 14.2 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <vector>
#include "Layer.h"
19
#include "MKLDNNBase.h"
T
tensor-tang 已提交
20
#include "mkldnn.hpp"
T
tensor-tang 已提交
21
#include "paddle/math/MKLDNNMatrix.h"
22
#include "paddle/utils/Stat.h"
T
tensor-tang 已提交
23

T
tensor-tang 已提交
24 25
DECLARE_bool(use_mkldnn);

T
tensor-tang 已提交
26 27
namespace paddle {

28 29
class MKLDNNLayer;
typedef std::shared_ptr<MKLDNNLayer> MKLDNNLayerPtr;
T
tensor-tang 已提交
30 31

/**
32
 * @brief Base class of MKLDNNlayer.
T
tensor-tang 已提交
33 34
 *
 */
35
class MKLDNNLayer : public Layer {
T
tensor-tang 已提交
36
protected:
37 38
  // input value element count
  size_t inputElemenCnt_;
T
tensor-tang 已提交
39 40 41 42 43 44 45
  // batch size
  int bs_;
  // input image channel, height and width
  int ic_, ih_, iw_;
  // output image channel, height and width
  int oc_, oh_, ow_;

T
tensor-tang 已提交
46 47 48
  // backward also need reset after reset forward handle
  bool needResetBwd_;

T
tensor-tang 已提交
49 50
  // mkldnn engine, stream and primivtives
  mkldnn::engine engine_;
51
  std::shared_ptr<MKLDNNStream> stream_;
T
tensor-tang 已提交
52
  std::shared_ptr<mkldnn::primitive> fwd_;
T
tensor-tang 已提交
53 54
  std::shared_ptr<mkldnn::primitive> bwdWgt_;
  std::shared_ptr<mkldnn::primitive> bwdData_;
T
tensor-tang 已提交
55 56 57
  std::vector<mkldnn::primitive> pipelineFwd_;
  std::vector<mkldnn::primitive> pipelineBwd_;

58
  // MKLDNNMatrixPtr with internal format
T
tensor-tang 已提交
59
  MKLDNNMatrixPtr inVal_;
T
tensor-tang 已提交
60
  MKLDNNMatrixPtr inGrad_;
T
tensor-tang 已提交
61
  MKLDNNMatrixPtr outVal_;
T
tensor-tang 已提交
62
  MKLDNNMatrixPtr outGrad_;
T
tensor-tang 已提交
63
  MKLDNNMatrixPtr wgtVal_;
T
tensor-tang 已提交
64
  MKLDNNMatrixPtr wgtGrad_;
T
tensor-tang 已提交
65
  MKLDNNMatrixPtr biasVal_;
T
tensor-tang 已提交
66
  MKLDNNMatrixPtr biasGrad_;
T
tensor-tang 已提交
67

T
tensor-tang 已提交
68 69
  // merge grad primitive
  std::shared_ptr<mkldnn::primitive> mergeGrad_;
70
  std::vector<mkldnn::primitive> pipelineMergeGrad_;
T
tensor-tang 已提交
71 72
  // tmp input argument to save input grad, only used to merge grad
  Argument tmpInArg_;
73 74 75 76 77
  // since mkldnn sum do not support different formats:
  // can refer to https://github.com/01org/mkl-dnn/issues/134
  // so need create reorder manually and save tmp MKLDNNMatrix
  MKLDNNMatrixPtr tmpOutGrad_;
  std::shared_ptr<mkldnn::primitive> tmpCvt_;
T
tensor-tang 已提交
78

T
tensor-tang 已提交
79
public:
80
  explicit MKLDNNLayer(const LayerConfig& config)
T
tensor-tang 已提交
81
      : Layer(config),
82
        inputElemenCnt_(0),
T
tensor-tang 已提交
83 84 85 86 87 88 89
        bs_(0),
        ic_(0),
        ih_(0),
        iw_(0),
        oc_(0),
        oh_(0),
        ow_(0),
T
tensor-tang 已提交
90
        needResetBwd_(true),
T
tensor-tang 已提交
91
        engine_(mkldnn::engine::cpu, 0),
T
tensor-tang 已提交
92 93 94 95
        stream_(nullptr),
        fwd_(nullptr),
        bwdWgt_(nullptr),
        bwdData_(nullptr) {}
T
tensor-tang 已提交
96

97
  ~MKLDNNLayer() {}
T
tensor-tang 已提交
98

T
tensor-tang 已提交
99 100
  virtual bool init(const LayerMap& layerMap,
                    const ParameterMap& parameterMap) {
T
tensor-tang 已提交
101 102 103
    CHECK(FLAGS_use_mkldnn) << "MkldnnLayers only support use_mkldnn."
                            << "Please set WITH_MKLDNN=ON "
                            << "and set use_mkldnn=True";
T
refine  
tensor-tang 已提交
104
    CHECK(!useGpu_) << "Do not support GPU yet";
T
tensor-tang 已提交
105 106 107 108 109

    // set device id before Layer::init
    setDevice(MKLDNN_DEVICE);
    // change param device to MKLDNN device
    setParamsDevice(MKLDNN_DEVICE, parameterMap);
T
tensor-tang 已提交
110 111 112
    if (!Layer::init(layerMap, parameterMap)) {
      return false;
    }
T
tensor-tang 已提交
113
    setOutputMap();
114
    checkCPUOutputsNumber();
T
tensor-tang 已提交
115

116 117
    stream_.reset(new MKLDNNStream());
    engine_ = CPUEngine::Instance().getEngine();
T
tensor-tang 已提交
118 119
    return true;
  }
T
tensor-tang 已提交
120

121 122 123 124 125 126
  void forward(PassType passType) override {
    passType_ = passType;

    {
      REGISTER_TIMER_INFO("mkldnn_FwdTimer", getName().c_str());
      CHECK(!inputLayers_.empty());
127
      copySeqInfoToOutputs();
128 129
      size_t elemenCnt = inputLayers_[0]->getOutput().value->getElementCnt();
      if (inputElemenCnt_ != elemenCnt) {
T
tensor-tang 已提交
130
        VLOG(MKLDNN_BASE) << getName() << " reset mkldnn forward";
131
        // reset when input total sizes changed, not only the batchsize
132
        inputElemenCnt_ = elemenCnt;
T
tensor-tang 已提交
133
        pipelineFwd_.clear();
134 135
        reshape(bs_, ic_, ih_, iw_, oc_, oh_, ow_);
        resetFwd(pipelineFwd_, inVal_, wgtVal_, biasVal_, outVal_);
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
        convertWeightsFromPaddle();
        needResetBwd_ = true;
      }

      if (inputLayers_[0]->getType() == "data") {
        updateInputData();
      }

      stream_->submit(pipelineFwd_);
    }

    /* activation */ {
      REGISTER_TIMER_INFO("FwActTimer", getName().c_str());
      forwardActivation();
    }
  }

  void backward(const UpdateCallback& callback) override {
T
tensor-tang 已提交
154
    if (needResetBwd_) {
T
tensor-tang 已提交
155
      VLOG(MKLDNN_BASE) << getName() << " reset mkldnn backward";
T
tensor-tang 已提交
156
      pipelineBwd_.clear();
157 158
      pipelineMergeGrad_.clear();
      mergeGrad_ = nullptr;
T
tensor-tang 已提交
159 160 161
      resetBwd(pipelineBwd_, inGrad_, wgtGrad_, biasGrad_, outGrad_);
      needResetBwd_ = false;
    }
162 163 164 165 166 167

    // merge grad must before backward activation
    if (mergeGrad_) {
      REGISTER_TIMER_INFO("MergeBpGrad", getName().c_str());
      stream_->submit(pipelineMergeGrad_);
    }
T
tensor-tang 已提交
168
    {
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
      REGISTER_TIMER_INFO("BpActTimer", getName().c_str());
      backwardActivation();
    }
    {
      REGISTER_TIMER_INFO("mkldnn_bwdTimer", getName().c_str());
      stream_->submit(pipelineBwd_);
    }

    {
      REGISTER_TIMER_INFO("WeightUpdate", getName().c_str());
      updateWeights(callback);
    }
  }

  /**
   * reshape the input image sizes
   * and reset output image and buffer size
186
   * output channel can not be changed
187
   */
188 189
  virtual void reshape(
      int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) = 0;
190 191 192 193 194

  /**
   * reset the mkldnn forward primitve and memory
   * only would be called when input size changes
   */
195 196 197 198 199
  virtual void resetFwd(std::vector<mkldnn::primitive>& pipeline,
                        MKLDNNMatrixPtr& in,
                        MKLDNNMatrixPtr& wgt,
                        MKLDNNMatrixPtr& bias,
                        MKLDNNMatrixPtr& out) = 0;
200 201 202 203 204

  /**
   * reset the mkldnn backward primitve and memory for mkldnn fc
   * only would be called when needed
   */
205 206 207 208 209
  virtual void resetBwd(std::vector<mkldnn::primitive>& pipeline,
                        MKLDNNMatrixPtr& in,
                        MKLDNNMatrixPtr& wgt,
                        MKLDNNMatrixPtr& bias,
                        MKLDNNMatrixPtr& out) = 0;
210 211 212 213 214 215 216 217 218 219 220 221

  /**
   * Update input value data when input layer is "data" type.
   * Since the input value data address might be changed.
   */
  virtual void updateInputData() {}

  /**
   * Update weights and biases if necessary.
   */
  virtual void updateWeights(const UpdateCallback& callback) {}

T
tensor-tang 已提交
222 223 224 225
  /**
   * convert weight from paddle format to mkldnn format
   * weight_ will be override
   */
226
  virtual void convertWeightsFromPaddle() {}
T
tensor-tang 已提交
227 228 229 230 231

  /**
   * convert mkldnn weight to paddle format
   * weight_ will be override
   */
232
  virtual void convertWeightsToPaddle() {}
T
tensor-tang 已提交
233

234
  /**
235
   * add this interface as public for unit test
236
   */
237 238 239 240 241 242
  void addOutputArgument(int deviceId) { Layer::addOutputArgument(deviceId); }

protected:
  /**
   * reshape the input image sizes and input batchsize
   */
243
  virtual void reshapeInput(int& batchsize, int& height, int& width) {
244
    const Argument& input = inputLayers_[0]->getOutput();
245 246 247 248 249
    batchsize = input.getBatchSize();
    int h = input.getFrameHeight();
    int w = input.getFrameWidth();
    if (h != 0) {
      height = h;
250
    }
251 252
    if (w != 0) {
      width = w;
253 254 255 256 257 258 259 260 261 262 263 264 265 266
    }
  }

  /**
   * reshape output image sizes
   */
  virtual void reshapeOutput(size_t height, size_t width) {
    output_.setFrameHeight(height);
    output_.setFrameWidth(width);
    for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
      outputOtherDevice_[i].setFrameHeight(height);
      outputOtherDevice_[i].setFrameWidth(width);
    }
  }
267

T
tensor-tang 已提交
268 269 270
  /**
   * reset the output grad matrix from primitive desc.
   * and reset the merge grad primitive if needed.
T
tensor-tang 已提交
271 272 273
   * note: when this layer has serval outputs,
   *       it could not be mixed with cpu device,
   *       since it can not get memory desc from cpu device.
T
tensor-tang 已提交
274 275 276
   */
  virtual void resetOutGrad(MKLDNNMatrixPtr& out,
                            mkldnn::memory::primitive_desc pd) {
277
    CHECK(outputIsOnlyMKLDNN()) << "do not support mixed with other device yet";
T
tensor-tang 已提交
278
    mergeGrad_ = nullptr;
279
    pipelineMergeGrad_.clear();
T
tensor-tang 已提交
280 281 282 283
    out = MKLDNNMatrix::create(output_.grad, pd);
    if (outputMap_.size() <= 1) {
      return;
    }
T
tensor-tang 已提交
284
    std::vector<double> scales(outputMap_.size(), 1.0);
T
tensor-tang 已提交
285 286 287 288 289
    std::vector<mkldnn::memory::primitive_desc> srcPDs;
    std::vector<mkldnn::primitive::at> srcs;
    for (auto it = outputMap_.begin(); it != outputMap_.end(); ++it) {
      MKLDNNMatrixPtr src =
          std::dynamic_pointer_cast<MKLDNNMatrix>(it->second->grad);
290
      VLOG(MKLDNN_BASE) << getName() << " has output grad " << it->first;
T
tensor-tang 已提交
291 292 293 294 295 296 297 298 299 300
      CHECK(src) << "should be MKLDNNMatrix";
      auto srcDims = src->getDims();
      auto dstDims = out->getDims();
      CHECK_EQ(srcDims.size(), dstDims.size());
      for (size_t i = 0; i < srcDims.size(); ++i) {
        CHECK_EQ(srcDims[i], dstDims[i]);
      }
      srcPDs.push_back(src->getPrimitiveDesc());
      srcs.push_back(*src);
    }
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320

    // TODO(TJ): remove me when mkldnn sum support different formats
    for (size_t i = 1; i < srcPDs.size(); ++i) {
      CHECK(srcPDs[0] == srcPDs[i]);
    }
    tmpOutGrad_ = nullptr;
    tmpCvt_ = nullptr;
    if (out->getPrimitiveDesc() != srcPDs[0]) {
      tmpOutGrad_ = MKLDNNMatrix::create(nullptr, srcPDs[0]);
      tmpCvt_ = MKLDNNMatrix::createReorder(tmpOutGrad_, out);
      CHECK(tmpCvt_);
      pipelineMergeGrad_.push_back(*tmpCvt_);
    } else {
      tmpOutGrad_ = out;
    }

    auto sumPD = mkldnn::sum::primitive_desc(
        tmpOutGrad_->getMemoryDesc(), scales, srcPDs);
    mergeGrad_.reset(new mkldnn::sum(sumPD, srcs, *tmpOutGrad_));
    pipelineMergeGrad_.insert(pipelineMergeGrad_.begin(), *mergeGrad_);
T
tensor-tang 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333
  }

  /**
   * reset input grad from primitive desc.
   * this function is avaiable for input is only mkldnn
   * or input do not care cpu device
   */
  virtual void resetInGrad(MKLDNNMatrixPtr& in,
                           mkldnn::memory::primitive_desc pd) {
    LayerPtr& input = inputLayers_[0];
    const MatrixPtr& grad =
        input->getOutputMapSize() > 1 ? nullptr : input->getOutput().grad;
    in = MKLDNNMatrix::create(grad, pd);
334
    Argument& arg = input->getOutput(this->getName());
T
tensor-tang 已提交
335 336 337
    arg.grad = std::dynamic_pointer_cast<Matrix>(in);
  }

T
tensor-tang 已提交
338 339 340 341 342 343 344 345
  /**
   * print info about sizes
   */
  virtual void printSizeInfo() {
    VLOG(MKLDNN_SIZES) << getName() << ": bs: " << bs_ << ", ic: " << ic_
                       << ", ih: " << ih_ << ", iw: " << iw_ << ", oc: " << oc_
                       << ", oh: " << oh_ << ", ow: " << ow_;
  }
T
tensor-tang 已提交
346

347 348 349 350 351
  /**
   * Print the mkldnn memory format flow of value
   */
  virtual void printValueFormatFlow() {
    if (inVal_ && outVal_) {
352 353
      VLOG(MKLDNN_FMTS) << inVal_->getFormat() << " >>> "
                        << outVal_->getFormat();
354
    }
T
tensor-tang 已提交
355
  }
T
tensor-tang 已提交
356

357 358 359 360 361
  /**
   * Print the mkldnn memory format flow of grad
   */
  virtual void printGradFormatFlow() {
    if (inGrad_ && outGrad_) {
362 363
      VLOG(MKLDNN_FMTS) << inGrad_->getFormat() << " <<< "
                        << outGrad_->getFormat();
364
    }
T
tensor-tang 已提交
365 366 367
  }

protected:
368
  /**
T
rename  
tensor-tang 已提交
369
   * If input only has MKLDNN device.
T
refine  
tensor-tang 已提交
370
   * Otherwise, only support the previous layer using CPU device.
371
   */
T
rename  
tensor-tang 已提交
372
  bool inputIsOnlyMKLDNN(int index = 0) {
373 374 375 376 377 378 379 380 381 382
    int prevDevice = getPrev(index)->getDeviceId();
    if (prevDevice == MKLDNN_DEVICE) {
      return true;
    } else {
      // do not support GPU yet
      CHECK_EQ(prevDevice, CPU_DEVICE) << "Only support CPU yet";
      return false;
    }
  }

T
refine  
tensor-tang 已提交
383 384 385 386
  /**
   * If output only has MKLDNN device.
   * Otherwise, other devices should only using CPU device.
   */
T
rename  
tensor-tang 已提交
387
  bool outputIsOnlyMKLDNN() {
T
refine  
tensor-tang 已提交
388 389 390 391 392 393 394
    for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
      CHECK_EQ(outputOtherDevice_[i].deviceId, CPU_DEVICE)
          << "Only support other device is CPU yet";
    }
    return outputOtherDevice_.size() == 0;
  }

T
tensor-tang 已提交
395 396 397 398 399
  /**
   * Set deviceId of this layer.
   */
  void setDevice(int id) { deviceId_ = id; }

400
private:
T
tensor-tang 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
  /**
   * Set deviceId of the params used in this layer.
   */
  void setParamsDevice(int id, const ParameterMap& parameterMap) {
    for (auto& inputConfig : config_.inputs()) {
      if (inputConfig.has_input_parameter_name()) {
        ParameterPtr parameter;
        std::string name = inputConfig.input_parameter_name();
        CHECK(mapGet(name, parameterMap, &parameter))
            << "Cannot find input parameter " << name << " for layer "
            << getName();
        parameter->setDevice(id);
      }
    }
    if (config_.has_bias_parameter_name()) {
      ParameterPtr parameter;
      std::string name = config_.bias_parameter_name();
      CHECK(mapGet(name, parameterMap, &parameter))
          << "Cannot find bias parameter " << name << " for layer "
          << getName();
      parameter->setDevice(id);
    }
T
tensor-tang 已提交
423
  }
424

T
tensor-tang 已提交
425 426 427 428 429 430 431 432 433 434
  /**
   * Set output map of prev layers.
   */
  void setOutputMap() {
    outputMap_.clear();
    for (size_t i = 0; i < inputLayers_.size(); ++i) {
      inputLayers_[i]->setOutput(getName(), &tmpInArg_);
    }
  }

435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
  /**
   * Check the cpu device number of outputOtherDevice_.
   * should have only one at most.
   */
  void checkCPUOutputsNumber(int max = 1) {
    int cnt = 0;
    for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
      if (outputOtherDevice_[i].deviceId == CPU_DEVICE) {
        ++cnt;
      }
    }
    CHECK_LE(cnt, max) << "too much CPU devies";
  }

  /**
   * copy SeqInfo from input layer to this output and other output devices.
   * @note: do not use getInput(0) since it used this deviceId_,
   *        use "inputLayers_[0]->getOutput()" instead.
   */
  void copySeqInfoToOutputs() {
    if (inputLayers_.empty() || !needSequenceInfo_) {
      return;
    }
    const Argument& input = inputLayers_[0]->getOutput();
    output_.sequenceStartPositions = input.sequenceStartPositions;
    output_.subSequenceStartPositions = input.subSequenceStartPositions;
    output_.cpuSequenceDims = input.cpuSequenceDims;
    for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
      outputOtherDevice_[i].sequenceStartPositions =
          output_.sequenceStartPositions;
      outputOtherDevice_[i].subSequenceStartPositions =
          output_.subSequenceStartPositions;
      outputOtherDevice_[i].cpuSequenceDims = output_.cpuSequenceDims;
    }
  }
T
tensor-tang 已提交
470 471 472
};

}  // namespace paddle