dropout_impl.cu.h 11.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <string>

#ifdef PADDLE_WITH_CUDA
#include <cuda.h>
#include <curand_kernel.h>
#include "paddle/fluid/platform/dynload/curand.h"
#endif
#ifdef PADDLE_WITH_HIP
#include <hip/hip_runtime.h>
#include <hiprand_kernel.h>
#include "paddle/fluid/platform/dynload/hiprand.h"
#endif

#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/framework/tensor_util.h"
S
sneaxiy 已提交
33
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
34
#include "paddle/fluid/operators/dropout_impl_util.h"
35
#include "paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h"
H
hong 已提交
36 37
#include "paddle/fluid/platform/aligned_vector.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
38
#include "paddle/phi/kernels/funcs/distribution_helper.h"
39
#include "paddle/phi/kernels/funcs/functors.h"
40 41
namespace paddle {
namespace operators {
42 43 44 45 46 47 48 49 50 51 52
template <typename T1, typename T2 = T1, typename OutT = T1>
struct DstMaskGenerator {
  const float dropout_prob_;
  const bool is_upscale_in_train_;
  using MT = typename details::MPTypeTrait<T1>::Type;
  MT factor;
  HOSTDEVICE inline DstMaskGenerator(const float dropout_prob,
                                     const bool is_upscale_in_train)
      : dropout_prob_(dropout_prob), is_upscale_in_train_(is_upscale_in_train) {
    factor = static_cast<MT>(1.0f / (1.0f - dropout_prob_));
  }
53

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
  HOSTDEVICE inline void operator()(OutT* dst, const T1* src_val,
                                    const T2* rand, int num) const {
    static constexpr int kCount =
        phi::funcs::uniform_distribution<T2>::kReturnsCount;
// 0 ~ kCount -1 is dist , kCount ~ 2 * kCount - 1 is mask
#pragma unroll
    for (int i = 0; i < kCount; i++) {
      if (rand[i] < dropout_prob_) {
        dst[i] = static_cast<T1>(0);
        dst[i + kCount] = dst[i];
      } else {
        dst[i] = is_upscale_in_train_
                     ? static_cast<T1>(static_cast<MT>(src_val[i]) * factor)
                     : static_cast<T1>(src_val[i]);
        dst[i + kCount] = static_cast<T1>(1);
      }
70 71
    }
  }
72
};
73

74
template <typename T, typename MaskType>
75 76 77 78
__global__ void VectorizedRandomGenerator(const size_t n, uint64_t seed,
                                          const float dropout_prob,
                                          const T* src, MaskType* mask, T* dst,
                                          bool is_upscale_in_train,
79 80 81 82 83 84
                                          uint64_t increment,
                                          size_t main_offset) {
  size_t idx = static_cast<size_t>(BLOCK_ID_X * BLOCK_NUM_X);
  static constexpr int kCount =
      phi::funcs::uniform_distribution<float>::kReturnsCount;
  size_t stride = BLOCK_NUM_X * GRID_NUM_X * kCount;
85 86
#ifdef PADDLE_WITH_HIP
  hiprandStatePhilox4_32_10_t state;
87 88
  hiprand_init(seed, idx + THREAD_ID_X, increment, &state);
  using SType = hiprandStatePhilox4_32_10_t;
89 90
#else
  curandStatePhilox4_32_10_t state;
91 92
  curand_init(seed, idx + THREAD_ID_X, increment, &state);
  using SType = curandStatePhilox4_32_10_t;
93
#endif
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
  T dst_mask[kCount * 2];  // 0 ~ kCount -1 : dst;kCount ~ 2 * kCount - 1: mask
  float rands[kCount];
  MaskType mask_result[kCount];
  using Rand = phi::funcs::uniform_distribution<float>;
  using Cast = kps::IdentityFunctor<T>;
  int deal_size = BLOCK_NUM_X * kCount;
  auto dst_functor =
      DstMaskGenerator<T, float>(dropout_prob, is_upscale_in_train);
  size_t fix = idx * kCount;
  for (; fix < main_offset; fix += stride) {
    kps::ReadData<T, kCount, 1, 1, false>(&dst_mask[0], src + fix, deal_size);
    kps::ElementwiseRandom<SType, float, kCount, 1, Rand>(&rands[0], Rand(),
                                                          &state);
    // dst
    kps::OperatorTernary<T, float, T, DstMaskGenerator<T, float>>(
        &dst_mask[0], &dst_mask[0], &rands[0], dst_functor, kCount);
    kps::WriteData<T, kCount, 1, 1, false>(dst + fix, &dst_mask[0], deal_size);
    // mask
    kps::ElementwiseUnary<T, MaskType, kCount, 1, 1, Cast>(
        &mask_result[0], &dst_mask[kCount], Cast());
    kps::WriteData<MaskType, kCount, 1, 1, false>(mask + fix, &mask_result[0],
                                                  deal_size);
116
  }
117 118 119 120 121 122 123 124 125 126 127 128 129 130
  int remainder = n - fix;
  if (remainder > 0) {
    kps::ReadData<T, kCount, 1, 1, true>(&dst_mask[0], src + fix, remainder);
    kps::ElementwiseRandom<SType, float, kCount, 1, Rand>(&rands[0], Rand(),
                                                          &state);
    // dst
    kps::OperatorTernary<T, float, T, DstMaskGenerator<T, float>>(
        &dst_mask[0], &dst_mask[0], &rands[0], dst_functor, kCount);
    kps::WriteData<T, kCount, 1, 1, true>(dst + fix, &dst_mask[0], remainder);
    // mask
    kps::ElementwiseUnary<T, MaskType, kCount, 1, 1, Cast>(
        &mask_result[0], &dst_mask[kCount], Cast());
    kps::WriteData<MaskType, kCount, 1, 1, true>(mask + fix, &mask_result[0],
                                                 remainder);
131 132 133 134
  }
}

template <typename T>
H
hong 已提交
135
void DropoutFwGPUKernelDriver(const phi::GPUContext& dev_ctx, bool is_test,
136 137
                              const std::string dropout_implementation,
                              float dropout_prob, bool upscale_in_train,
H
hong 已提交
138 139 140 141
                              bool is_fix_seed, int seed_val,
                              const framework::Tensor& x,
                              const framework::Tensor* seed,
                              framework::Tensor* mask, framework::Tensor* y) {
142
  auto& place = *dev_ctx.eigen_device();
143 144 145 146
  int64_t x_numel = x.numel();
  auto stream = dev_ctx.stream();
  auto* x_data = x.data<T>();
  auto* y_data = y->data<T>();
147 148 149

  if (!is_test) {
    auto* mask_data = mask->data<uint8_t>();
150
    size_t size = phi::product(mask->dims());
151 152 153

    if (dropout_prob == 1.0f) {
#ifdef PADDLE_WITH_HIP
154
      PADDLE_ENFORCE_GPU_SUCCESS(
155
          hipMemsetAsync(y_data, 0, x_numel * sizeof(T), stream));
156
      PADDLE_ENFORCE_GPU_SUCCESS(
157 158
          hipMemsetAsync(mask_data, 0, x_numel * sizeof(*mask_data), stream));
#else
159
      PADDLE_ENFORCE_GPU_SUCCESS(
160
          cudaMemsetAsync(y_data, 0, x_numel * sizeof(T), stream));
161
      PADDLE_ENFORCE_GPU_SUCCESS(
162 163 164 165 166 167 168 169 170 171 172 173 174 175
          cudaMemsetAsync(mask_data, 0, x_numel * sizeof(*mask_data), stream));
#endif
      return;
    }

    // increment is used to set the args(offset) of curand_init, which defines
    // offset in subsequence.
    // The detail:
    // https://docs.nvidia.com/cuda/curand/device-api-overview.html
    // Increment should be at least the number of curand() random numbers used
    // in each thread to avoid the random number generated this time being the
    // same as the previous calls.
    uint64_t seed_data;
    uint64_t increment;
Z
Zhang Ting 已提交
176
    // VectorizedRandomGenerator use curand_uniform4, so we only support
177 178 179
    // kVecSize is 4;
    constexpr int kVecSize =
        phi::funcs::uniform_distribution<float>::kReturnsCount;
H
hong 已提交
180
    auto gpu_config =
181
        phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, x_numel, kVecSize);
Z
Zhang Ting 已提交
182
    auto offset =
183
        ((x_numel - 1) / (gpu_config.GetThreadNum() * kVecSize) + 1) * kVecSize;
184 185
    GetSeedDataAndIncrement(dev_ctx, seed, is_fix_seed, seed_val, offset,
                            &seed_data, &increment);
186 187 188 189 190 191
    size_t main_offset = size / (gpu_config.GetBlockSize() * kVecSize) *
                         (gpu_config.GetBlockSize() * kVecSize);
    VectorizedRandomGenerator<T, uint8_t><<<
        gpu_config.GetGridSize(), gpu_config.GetBlockSize(), 0, stream>>>(
        size, seed_data, dropout_prob, x_data, mask_data, y_data,
        upscale_in_train, increment, main_offset);
192 193
  } else {
    if (upscale_in_train) {
194 195 196 197 198 199 200 201 202 203
// todo: can y share with data with x directly?
#ifdef PADDLE_WITH_HIP
      PADDLE_ENFORCE_GPU_SUCCESS(
          hipMemcpyAsync(y_data, x_data, sizeof(T) * x_numel,
                         hipMemcpyDeviceToDevice, stream));
#else
      PADDLE_ENFORCE_GPU_SUCCESS(
          cudaMemcpyAsync(y_data, x_data, sizeof(T) * x_numel,
                          cudaMemcpyDeviceToDevice, stream));
#endif
204
    } else {
205 206
      using MT = typename details::MPTypeTrait<T>::Type;
      MT factor = static_cast<MT>(1.0f - dropout_prob);
207 208 209 210 211
      std::vector<const framework::Tensor*> ins = {&x};
      std::vector<framework::Tensor*> outs = {y};
      auto functor = phi::funcs::ScaleFunctor<T>(factor);
      paddle::operators::LaunchSameDimsElementwiseCudaKernel<T>(dev_ctx, ins,
                                                                &outs, functor);
212 213 214 215
    }
  }
}

216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
template <typename T, typename MaskType>
struct CudaDropoutGradFunctor {
  using MT = typename details::MPTypeTrait<T>::Type;

  explicit CudaDropoutGradFunctor(const MT factor) : factor_(factor) {}

  __device__ __forceinline__ T operator()(const T dout,
                                          const MaskType mask) const {
    return static_cast<T>(static_cast<MT>(dout) * static_cast<MT>(mask) *
                          factor_);
  }

 private:
  MT factor_;
};

232
template <typename T>
H
hong 已提交
233
void DropoutGradGPUKernelDriver(const phi::GPUContext& dev_ctx,
234
                                const std::string dropout_implementation,
H
hong 已提交
235 236 237 238 239
                                float dropout_prob,
                                const framework::Tensor& grad_y,
                                const framework::Tensor& mask, int64_t size,
                                framework::Tensor* grad_x,
                                bool is_test = false) {
S
sneaxiy 已提交
240
  using MT = typename details::MPTypeTrait<T>::Type;
241 242
  auto stream = dev_ctx.stream();
  MT factor;
243 244
  if (is_test) {
    if (dropout_implementation == "upscale_in_train") {
245
      factor = static_cast<MT>(1.0f);
246
    } else {
247
      factor = static_cast<MT>(1.0f - dropout_prob);
248
    }
249 250 251 252 253
    std::vector<const framework::Tensor*> ins = {&grad_y};
    std::vector<framework::Tensor*> outs = {grad_x};
    auto functor = phi::funcs::ScaleFunctor<T>(factor);
    paddle::operators::LaunchSameDimsElementwiseCudaKernel<T>(dev_ctx, ins,
                                                              &outs, functor);
254
  } else {
255 256
    std::vector<const framework::Tensor*> ins = {&grad_y, &mask};
    std::vector<framework::Tensor*> outs = {grad_x};
257 258
    if (dropout_implementation == "upscale_in_train") {
      if (dropout_prob == 1.0f) {
259 260 261 262 263
#ifdef PADDLE_WITH_HIP
        hipMemset(grad_x->data<T>(), 0, size * sizeof(T));
#else
        cudaMemset(grad_x->data<T>(), 0, size * sizeof(T));
#endif
264
      } else {
265
        factor = static_cast<MT>(1.0f / (1.0f - dropout_prob));
266
        paddle::operators::LaunchSameDimsElementwiseCudaKernel<T>(
267
            dev_ctx, ins, &outs, CudaDropoutGradFunctor<T, uint8_t>(factor));
268
      }
269
    } else {
270 271 272
      factor = static_cast<MT>(1.0f);
      paddle::operators::LaunchSameDimsElementwiseCudaKernel<T>(
          dev_ctx, ins, &outs, CudaDropoutGradFunctor<T, uint8_t>(factor));
273 274 275 276 277 278
    }
  }
}

}  // namespace operators
}  // namespace paddle