conv_mkldnn_op.cc 40.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

15
#include <unordered_map>
Y
Yu Yang 已提交
16 17
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/memory/malloc.h"
18
#include "paddle/fluid/operators/conv_op.h"
J
Jacek Czaja 已提交
19
#include "paddle/fluid/platform/mkldnn_reuse.h"
20 21 22 23

namespace paddle {
namespace operators {

24 25 26 27 28 29 30 31
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;

Y
Yihua Xu 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
inline void GetWeightsTz(std::vector<int>& weights_tz, int groups,  // NOLINT
                         bool is_conv3d) {
  if (groups > 1) {
    if (is_conv3d) {
      int output = weights_tz[0];
      int input = weights_tz[1];
      int dimension = weights_tz[2];
      int height = weights_tz[3];
      int width = weights_tz[4];
      weights_tz.resize(6);
      weights_tz[0] = groups;
      weights_tz[1] = output / groups;
      weights_tz[2] = input;
      weights_tz[3] = dimension;
      weights_tz[4] = height;
      weights_tz[5] = width;
    } else {
      int output = weights_tz[0];
      int input = weights_tz[1];
      int height = weights_tz[2];
      int width = weights_tz[3];
      weights_tz.resize(5);
      weights_tz[0] = groups;
      weights_tz[1] = output / groups;
      weights_tz[2] = input;
      weights_tz[3] = height;
      weights_tz[4] = width;
    }
  }
}

inline mkldnn::memory::format GetWeightsFormat(mkldnn::memory::format format,
                                               int groups, bool is_conv3d) {
  if (is_conv3d) {
    return (groups == 1) ? format : mkldnn::memory::format::goidhw;
  } else {
    return (groups == 1) ? format : mkldnn::memory::format::goihw;
  }
}

72
template <typename T, typename K>
73
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
74 75 76 77
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
78 79 80 81 82 83 84 85
    bool is_INT8 =
        std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
    if (!is_INT8) {
      ComputeFP32(ctx);
    } else {
      ComputeINT8(ctx);
    }
  }
86

87
  void ComputeFP32(const paddle::framework::ExecutionContext& ctx) const {
K
Krzysztof Binias 已提交
88 89
    const bool is_test = ctx.Attr<bool>("is_test");

90 91
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
92 93 94 95
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
96
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
97 98
    auto* output = ctx.Output<Tensor>("Output");

99 100 101 102 103 104
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
105
    PADDLE_ENFORCE(input->dims().size() == 4 || input->dims().size() == 5,
Y
Yihua Xu 已提交
106
                   "Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");
107 108
    PADDLE_ENFORCE(filter->dims().size() == 4 || filter->dims().size() == 5,
                   "Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");
109 110 111 112 113 114 115
    if (bias) {
      PADDLE_ENFORCE(bias->layout() == DataLayout::kMKLDNN &&
                         bias->format() != memory::format::format_undef,
                     "Wrong layout/format set for Bias tensor");
      PADDLE_ENFORCE(bias->dims().size() == 1,
                     "Bias must only have 1 dimension, i.e. X");
    }
116 117 118 119

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
M
Michal Gallus 已提交
120
    bool fuse_relu = ctx.Attr<bool>("fuse_relu");
121
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
122 123
    int groups = ctx.Attr<int>("groups");

124
    bool is_conv3d = strides.size() == 3U;
125
    // TODO(tpatejko): add support for dilation
126
    PADDLE_ENFORCE(
127 128 129 130
        is_conv3d
            ? dilations.size() == 3 && dilations[0] == 1 && dilations[1] == 1 &&
                  dilations[2] == 1
            : dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
131 132 133 134 135 136 137 138
        "dilation in convolution is not implemented yet");

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
139
    int g = std::max(groups, 1);
Y
Yihua Xu 已提交
140
    GetWeightsTz(weights_tz, g, is_conv3d);
141 142
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

143
    // Get unique name for storing MKLDNN primitives
J
Jacek Czaja 已提交
144
    const std::string key = platform::ConvMKLDNNHandler::GetHash(
145 146 147 148 149 150
        src_tz, weights_tz, strides, paddings, dilations, groups,
        ctx.op().Output("Output"));
    const std::string key_conv_pd = key + "@conv_pd";

    std::vector<primitive> pipeline;

151 152
    auto src_format = input->format();
    mkldnn::memory::format weights_format =
Y
Yihua Xu 已提交
153
        GetWeightsFormat(filter->format(), g, is_conv3d);
154

155
    auto user_src_md = platform::MKLDNNMemDesc(
156
        {src_tz}, platform::MKLDNNGetDataType<T>(), src_format);
157
    auto user_weights_md = platform::MKLDNNMemDesc(
158
        {weights_tz}, platform::MKLDNNGetDataType<T>(), weights_format);
159 160 161 162 163

    /* create memory descriptor for convolution without specified format
     * ('any') which lets a primitive (convolution in this case) choose
     * the memory format preferred for best performance
     */
164 165 166 167
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

168 169 170 171 172 173 174
    weights_format = mkldnn::memory::format::any;
    // Check the format for user's special output
    if (chosen_memory_format != mkldnn::memory::format::any) {
      if (is_conv3d) {
        chosen_memory_format =
            platform::MKLDNNFormatForSize(src_tz.size(), chosen_memory_format);
      }
175 176
    }

177
    auto src_md = platform::MKLDNNMemDesc(
178
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
179
    auto weights_md = platform::MKLDNNMemDesc(
180
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
181 182
    std::vector<int> bias_tz;  // TODO(mgallus): avoid empty vector creation.
                               // Currently used whenever bias is != nullptr.
183
    auto dst_md = platform::MKLDNNMemDesc(
184
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
185 186

    // create a conv primitive descriptor and save it for usage in backward
187
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
188 189
    auto fwd_prop_kind = is_test ? mkldnn::prop_kind::forward_inference
                                 : mkldnn::prop_kind::forward_training;
190 191 192 193
    if (bias) {
      bias_tz = paddle::framework::vectorize2int(bias->dims());
      auto bias_md = platform::MKLDNNMemDesc(
          bias_tz, platform::MKLDNNGetDataType<T>(), memory::format::x);
194 195 196
      conv_pd = ConvFwdPrimitiveDesc(
          src_md, weights_md, bias_md, dst_md, strides, paddings, mkldnn_engine,
          fuse_relu, fuse_residual_conn, fwd_prop_kind);
197
    } else {
198 199 200
      conv_pd = ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides,
                                     paddings, mkldnn_engine, fuse_relu,
                                     fuse_residual_conn, fwd_prop_kind);
201
    }
202
    // Save conv_pd/src_memory/weights_memory for backward pass
203
    if (!is_test) dev_ctx.SetBlob(key_conv_pd, conv_pd);
204

J
Jacek Czaja 已提交
205
    platform::ConvMKLDNNHandler handler(conv_pd, dev_ctx, mkldnn_engine, key);
206

207 208 209 210 211 212
    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));

213 214 215 216 217
    // create reorder primitive if the input format is not the preferred one
    auto src_memory_p =
        handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
    auto weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
        user_weights_memory_p, pipeline, is_test);
218 219

    std::shared_ptr<mkldnn::memory> dst_memory_p;
220

221
    if (fuse_residual_conn) {
222 223
      auto residual_param = ctx.Input<Tensor>("ResidualData");
      auto residual_param_data = residual_param->data<T>();
224

225 226 227 228 229 230
      PADDLE_ENFORCE(
          residual_param_data != nullptr,
          "Provide data if you want MKLDNN conv+elementwise_add fusion");
      PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                        "Output and elementwise parameter need to have the "
                        "same dimension sizes");
231

232
      if (residual_param->format() != handler.GetDstFormat()) {
Y
Yu Yang 已提交
233 234 235
        auto output_data = output->mutable_data<T>(
            ctx.GetPlace(), ::paddle::memory::Allocator::kDefault,
            handler.GetDstMemorySize());
236 237 238 239 240 241 242 243 244
        auto residual_data_tz =
            paddle::framework::vectorize2int(residual_param->dims());
        auto residual_data_type =
            paddle::framework::ToMKLDNNDataType(residual_param->type());

        auto user_residual_md = platform::MKLDNNMemDesc(
            residual_data_tz, residual_data_type, residual_param->format());
        auto user_residual_memory_p = handler.AcquireResidualDataMemory(
            user_residual_md, to_void_cast<T>(residual_param_data));
245 246 247

        dst_memory_p = handler.AcquireDstMemoryFromResidualDataMemory(
            user_residual_memory_p, to_void_cast<T>(output_data), pipeline);
248 249
      } else {
        output->ShareDataWith(*residual_param);
250 251 252
        auto output_data = output->mutable_data<T>(ctx.GetPlace());
        dst_memory_p =
            handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
253
      }
254
    } else {
255 256 257
      auto output_data = output->mutable_data<T>(
          ctx.GetPlace(), paddle::memory::Allocator::kDefault,
          handler.GetDstMemorySize());
258 259
      dst_memory_p =
          handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
260
    }
261 262

    // create convolution op primitive
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
    if (bias) {
      const T* bias_data = bias->data<T>();
      auto user_bias_md = platform::MKLDNNMemDesc(
          {bias_tz}, platform::MKLDNNGetDataType<T>(), memory::format::x);
      auto user_bias_memory_p =
          handler.AcquireBiasMemory(user_bias_md, to_void_cast<T>(bias_data));

      auto bias_memory_p =
          handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          bias_memory_p, dst_memory_p);
    } else {
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          dst_memory_p);
    }
279 280

    // push primitive to stream and wait until it's executed
281
    pipeline.push_back(*conv_p);
282 283 284
    stream(stream::kind::eager).submit(pipeline).wait();

    output->set_layout(DataLayout::kMKLDNN);
285
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
286
  }
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
  void ComputeINT8(const paddle::framework::ExecutionContext& ctx) const {
    const bool is_test = ctx.Attr<bool>("is_test");

    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");

    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
    PADDLE_ENFORCE(input->dims().size() == 4 || input->dims().size() == 5,
                   "Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");
    PADDLE_ENFORCE(filter->dims().size() == 4 || filter->dims().size() == 5,
                   "Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");
    if (bias) {
      PADDLE_ENFORCE(bias->layout() == DataLayout::kMKLDNN &&
                         bias->format() != memory::format::format_undef,
                     "Wrong layout/format set for Bias tensor");
      PADDLE_ENFORCE(bias->dims().size() == 1,
                     "Bias must only have 1 dimension, i.e. X");
    }

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");

X
xiaolil1 已提交
322 323
    bool fuse_relu = ctx.Attr<bool>("fuse_relu");

324 325 326 327 328 329 330 331 332 333
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");

    bool is_conv3d = strides.size() == 3U;
    // TODO(tpatejko): add support for dilation
    PADDLE_ENFORCE(
        is_conv3d
            ? dilations.size() == 3 && dilations[0] == 1 && dilations[1] == 1 &&
                  dilations[2] == 1
            : dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
        "dilation in convolution is not implemented yet");
X
xiaolil1 已提交
334

335 336 337 338 339 340 341 342 343 344 345
    PADDLE_ENFORCE(is_conv3d != true, "int8 does not support conv3d currently");

    const T* input_data = input->data<T>();

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
    int g = std::max(groups, 1);
    GetWeightsTz(weights_tz, g, is_conv3d);
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

X
xiaolil1 已提交
346 347 348 349 350 351 352 353 354 355 356 357
    mkldnn::memory::data_type src_dt =
        paddle::framework::ToMKLDNNDataType(input->type());
    auto dst_dt = fuse_relu ? paddle::framework::ToMKLDNNDataType(
                                  framework::DataTypeTrait<uint8_t>::DataType)
                            : paddle::framework::ToMKLDNNDataType(
                                  framework::DataTypeTrait<int8_t>::DataType);

    if (force_fp32_output) {
      dst_dt = paddle::framework::ToMKLDNNDataType(
          framework::DataTypeTrait<float>::DataType);
    }

358 359 360 361 362
    // Get unique name for storing MKLDNN primitives
    std::string key;
    key.reserve(MaxKeyLength);
    platform::ConvMKLDNNHandler::AppendKey(
        &key, src_tz, weights_tz, strides, paddings, dilations, groups, src_dt,
X
xiaolil1 已提交
363
        input->format(), dst_dt, ctx.op().Output("Output"));
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
    const std::string key_conv_pd = key + "@conv_pd";

    std::shared_ptr<mkldnn::convolution_forward> conv_p = nullptr;
    std::shared_ptr<mkldnn::memory> src_memory_p = nullptr;
    std::shared_ptr<mkldnn::memory> user_src_memory_p = nullptr;
    std::shared_ptr<mkldnn::memory> dst_memory_p = nullptr;
    std::vector<primitive> pipeline;
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd =
        nullptr;
    std::shared_ptr<platform::ConvMKLDNNHandler> handler = nullptr;

    auto prim_key = key + "@conv_p";
    auto dst_key = key + "@dst_mem_p";
    auto src_key = key + "@src_mem_p";
    auto user_src_key = key + "@user_src_mem_p";
    auto src_reorder_key = key + "@src_mem_preorder_p";
    conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx.GetBlob(prim_key));
    if (conv_p == nullptr || !is_test) {
      const K* filter_data = filter->data<K>();
      auto scale_in_data = ctx.Attr<float>("Scale_in");
      auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
      auto scale_out_data =
          force_fp32_output ? 1.0f : ctx.Attr<float>("Scale_out");

      bool is_multi_channel = scale_weights_data.size() > 1;

      int count = is_multi_channel ? (g > 1 ? (weights_tz)[1] * (weights_tz)[0]
                                            : (weights_tz)[0])
                                   : 1;
      std::vector<float> output_shift_scale(count);
#pragma omp parallel for if (count > 1)
      for (int i = 0; i < count; i++) {
        if (scale_weights_data[i] == 0.0)
          output_shift_scale[i] =
              scale_out_data;  // weights data will contain 0
                               // in some models, then weights
                               // scale couldn't be calculated
        else
          output_shift_scale[i] =
              scale_out_data / (scale_in_data * scale_weights_data[i]);
      }

      auto user_src_md =
          platform::MKLDNNMemDesc({src_tz}, src_dt, input->format());
      auto user_weights_md = platform::MKLDNNMemDesc(
          {weights_tz}, platform::MKLDNNGetDataType<K>(),
          ((g) == 1) ? mkldnn::memory::format::oihw
                     : mkldnn::memory::format::goihw);

      /* create memory descriptor for convolution without specified format
      * ('any') which lets a primitive (convolution in this case) choose
      * the memory format preferred for best performance
      */
      std::string data_format = ctx.Attr<std::string>("data_format");
      auto chosen_memory_format =
          platform::data_format_to_memory_format(data_format);

      std::vector<int> bias_tz;

      auto src_md =
          platform::MKLDNNMemDesc(src_tz, src_dt, chosen_memory_format);
      auto weights_md = platform::MKLDNNMemDesc(
          weights_tz, memory::data_type::s8, chosen_memory_format);
      auto dst_md =
          platform::MKLDNNMemDesc(dst_tz, dst_dt, chosen_memory_format);
      // create a conv primitive descriptor and save it for usage in backward
      if (bias) {
        bias_tz = paddle::framework::vectorize2int(bias->dims());
        auto bias_md = platform::MKLDNNMemDesc(bias_tz, memory::data_type::s32,
                                               memory::format::x);
        conv_pd = ConvFwdPrimitiveDesc(src_md, weights_md, bias_md, dst_md,
                                       strides, paddings, mkldnn_engine,
X
xiaolil1 已提交
437
                                       fuse_relu, output_shift_scale, is_test);
438
      } else {
X
xiaolil1 已提交
439 440 441
        conv_pd = ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides,
                                       paddings, mkldnn_engine, fuse_relu,
                                       output_shift_scale, is_test);
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
      }
      // Save conv_pd/src_memory/weights_memory for backward pass
      dev_ctx.SetBlob(key_conv_pd, conv_pd);

      handler.reset(new platform::ConvMKLDNNHandler(conv_pd, dev_ctx,
                                                    mkldnn_engine, key));

      // create mkldnn memory from input tensors (data/weights)
      user_src_memory_p =
          handler->AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
      auto user_weights_memory_p = handler->AcquireWeightsMemory(
          user_weights_md, to_void_cast<K>(filter_data));

      // create reorder primitive if the input format is not the preferred one
      src_memory_p =
          handler->AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);

      std::shared_ptr<mkldnn::memory> weights_memory_p;
      int mask_reorder =
          is_multi_channel ? ((g != 1) ? (1 << 1) + (1 << 0) : 1 << 0) : 0;
      weights_memory_p = handler->AcquireWeightsMemoryFromPrimitive(
          user_weights_memory_p, pipeline, is_test, true, scale_weights_data,
          mask_reorder);

      if (!force_fp32_output) {
X
xiaolil1 已提交
467 468 469 470 471
        if (fuse_relu) {
          dst_memory_p = platform::SetDstMemory<uint8_t>(ctx, output, handler);
        } else {
          dst_memory_p = platform::SetDstMemory<int8_t>(ctx, output, handler);
        }
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
      } else {
        dst_memory_p = platform::SetDstMemory<float>(ctx, output, handler);
      }

      // create convolution op primitive
      auto scale_bias_key = key + "@scale_bias";
      if (bias) {
        const float* bias_data = bias->data<float>();
        auto user_bias_md = platform::MKLDNNMemDesc(
            {bias_tz}, platform::MKLDNNGetDataType<float>(), memory::format::x);
        auto user_bias_memory_p = handler->AcquireBiasMemory(
            user_bias_md, to_void_cast<float>(bias_data));
        std::shared_ptr<mkldnn::memory> bias_memory_p;
        int mask_reorder = is_multi_channel ? 1 << 0 : 1;
        int count =
            is_multi_channel
                ? (g > 1 ? (weights_tz)[1] * (weights_tz)[0] : (weights_tz)[0])
                : 1;
        std::vector<float> scale_bias_data(count);
#pragma omp parallel for if (count > 1)
        for (int i = 0; i < count; i++) {
          scale_bias_data[i] = scale_in_data * scale_weights_data[i];
        }
        bias_memory_p = handler->AcquireBiasMemoryFromPrimitive(
            user_bias_memory_p, pipeline, is_test, true, scale_bias_data,
            mask_reorder);
        conv_p = handler->AcquireConvolution(src_memory_p, weights_memory_p,
                                             bias_memory_p, dst_memory_p);
      } else {
        conv_p = handler->AcquireConvolution(src_memory_p, weights_memory_p,
                                             dst_memory_p);
      }

      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_p);
    } else {
      auto src_memory_reorder_p = std::static_pointer_cast<mkldnn::memory>(
          dev_ctx.GetBlob(src_reorder_key));
      src_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(src_key));
      if (src_memory_reorder_p) {
        user_src_memory_p = std::static_pointer_cast<mkldnn::memory>(
            dev_ctx.GetBlob(user_src_key));
        user_src_memory_p->set_data_handle(to_void_cast<T>(input_data));
      } else if (src_memory_p) {
        src_memory_p->set_data_handle(to_void_cast<T>(input_data));
      }

      dst_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(dst_key));
      conv_pd =
          std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
              dev_ctx.GetBlob(key_conv_pd));
      if (conv_pd) {
        handler.reset(new platform::ConvMKLDNNHandler(conv_pd, dev_ctx,
                                                      mkldnn_engine, key));
      }
      if (!force_fp32_output) {
X
xiaolil1 已提交
530 531 532 533 534 535 536
        if (fuse_relu) {
          dst_memory_p =
              platform::SetDstMemoryHandler<uint8_t>(ctx, output, handler);
        } else {
          dst_memory_p =
              platform::SetDstMemoryHandler<int8_t>(ctx, output, handler);
        }
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
      } else {
        dst_memory_p =
            platform::SetDstMemoryHandler<float>(ctx, output, handler);
      }
      if (src_memory_reorder_p) {
        pipeline.push_back(*src_memory_reorder_p);
      }
      pipeline.push_back(*conv_p);
    }
    // push primitive to stream and wait until it's executed
    stream(stream::kind::eager).submit(pipeline).wait();

    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
  }
552

553
 private:
554
  mkldnn::primitive_attr CreatePostOps(bool fuse_relu,
555
                                       bool fuse_residual_conn) const {
M
Michal Gallus 已提交
556 557
    mkldnn::primitive_attr conv_attr;
    mkldnn::post_ops post_operations;
558
    // Fusion with Elementwise layer relies on adding a sum post-operation with
559 560 561 562 563
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
    if (fuse_residual_conn) {
564 565 566 567 568 569 570 571 572 573 574
      post_operations.append_sum(1.0f);
    }
    // Fusion with ReLU layer is executed through the PostOps feature. Create a
    // PostOps object and configure it to execute an eltwise relu operation.
    if (fuse_relu) {
      constexpr float scale = 1.0f;
      constexpr float negative_slope = 0.0f;
      constexpr float placeholder = 0.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                     negative_slope, placeholder);
    }
M
Michal Gallus 已提交
575 576 577 578
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }

579
  mkldnn::primitive_attr CreatePostOps(
X
xiaolil1 已提交
580
      bool fuse_relu, const std::vector<float> output_shift_scale) const {
581 582 583 584
    mkldnn::primitive_attr conv_attr;
    mkldnn::post_ops post_operations;
    int mask = output_shift_scale.size() > 1 ? 1 << 1 : 0;
    conv_attr.set_output_scales(mask, output_shift_scale);
X
xiaolil1 已提交
585 586 587 588 589 590 591
    if (fuse_relu) {
      constexpr float scale = 1.0f;
      constexpr float negative_slope = 0.0f;
      constexpr float placeholder = 1.0f;  // beta
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                     negative_slope, placeholder);
    }
592 593 594 595
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }

596 597 598 599
  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
  ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                       const memory::desc& dst, const std::vector<int>& strides,
                       const std::vector<int>& paddings,
600
                       const mkldnn::engine& engine, const bool fuse_relu,
601 602
                       const bool fuse_residual_conn,
                       mkldnn::prop_kind fwd_prop_kind) const {
603 604
    memory::dims stride_dims = strides;
    memory::dims padding_dims = paddings;
605

606
    auto conv_desc = mkldnn::convolution_forward::desc(
607 608
        fwd_prop_kind, mkldnn::convolution_direct, src, weights, dst,
        stride_dims, padding_dims, padding_dims, mkldnn::padding_kind::zero);
609

610 611
    mkldnn::primitive_attr conv_attr =
        CreatePostOps(fuse_relu, fuse_residual_conn);
M
Michal Gallus 已提交
612 613 614

    auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
        conv_desc, conv_attr, engine);
615

616 617
    return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
        p_conv_pd);
618
  }
619

620 621 622 623
  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
  ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                       const memory::desc& dst, const std::vector<int>& strides,
                       const std::vector<int>& paddings,
X
xiaolil1 已提交
624
                       const mkldnn::engine& engine, const bool fuse_relu,
625 626 627 628 629 630 631 632 633 634 635 636
                       const std::vector<float> output_shift_scale,
                       bool is_test) const {
    memory::dims stride_dims = {strides[0], strides[1]};
    memory::dims padding_dims = {paddings[0], paddings[1]};

    auto propagation = is_test ? mkldnn::prop_kind::forward_scoring
                               : mkldnn::prop_kind::forward_training;

    auto conv_desc = mkldnn::convolution_forward::desc(
        propagation, mkldnn::convolution_direct, src, weights, dst, stride_dims,
        padding_dims, padding_dims, mkldnn::padding_kind::zero);

X
xiaolil1 已提交
637 638
    mkldnn::primitive_attr conv_attr =
        CreatePostOps(fuse_relu, output_shift_scale);
639 640 641 642 643 644 645 646

    auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
        conv_desc, conv_attr, engine);

    return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
        p_conv_pd);
  }

647 648 649 650 651
  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
  ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                       const memory::desc& bias, const memory::desc& dst,
                       const std::vector<int>& strides,
                       const std::vector<int>& paddings,
652
                       const mkldnn::engine& engine, const bool fuse_relu,
653 654
                       const bool fuse_residual_conn,
                       mkldnn::prop_kind fwd_prop_kind) const {
655 656
    memory::dims stride_dims = strides;
    memory::dims padding_dims = paddings;
657 658

    auto conv_desc = mkldnn::convolution_forward::desc(
659 660
        fwd_prop_kind, mkldnn::convolution_direct, src, weights, bias, dst,
        stride_dims, padding_dims, padding_dims, mkldnn::padding_kind::zero);
661

662 663
    mkldnn::primitive_attr conv_attr =
        CreatePostOps(fuse_relu, fuse_residual_conn);
M
Michal Gallus 已提交
664 665 666

    auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
        conv_desc, conv_attr, engine);
667 668 669 670

    return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
        p_conv_pd);
  }
671 672 673 674 675 676

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
  ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                       const memory::desc& bias, const memory::desc& dst,
                       const std::vector<int>& strides,
                       const std::vector<int>& paddings,
X
xiaolil1 已提交
677
                       const mkldnn::engine& engine, const bool fuse_relu,
678 679 680 681 682 683 684 685 686 687 688 689
                       const std::vector<float> output_shift_scale,
                       bool is_test) const {
    memory::dims stride_dims = {strides[0], strides[1]};
    memory::dims padding_dims = {paddings[0], paddings[1]};

    auto propagation = is_test ? mkldnn::prop_kind::forward_scoring
                               : mkldnn::prop_kind::forward_training;

    auto conv_desc = mkldnn::convolution_forward::desc(
        propagation, mkldnn::convolution_direct, src, weights, bias, dst,
        stride_dims, padding_dims, padding_dims, mkldnn::padding_kind::zero);

X
xiaolil1 已提交
690 691
    mkldnn::primitive_attr conv_attr =
        CreatePostOps(fuse_relu, output_shift_scale);
692 693 694 695 696 697 698

    auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
        conv_desc, conv_attr, engine);

    return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
        p_conv_pd);
  }
699 700 701
};

template <typename T>
702
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
703 704 705 706 707
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

708 709
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
710 711 712 713 714 715 716 717 718 719
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output = ctx.Input<Tensor>("Output");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

720 721 722 723 724 725 726 727 728 729 730 731 732
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
    PADDLE_ENFORCE(output->layout() == DataLayout::kMKLDNN &&
                       output->format() != memory::format::format_undef,
                   "Wrong layout/format set for Output tensor");
    PADDLE_ENFORCE(output_grad->layout() == DataLayout::kMKLDNN &&
                       output_grad->format() != memory::format::format_undef,
                   "Wrong layout/format set for output_grad tensor");

733 734 735 736
    PADDLE_ENFORCE(
        !ctx.Attr<bool>("is_test"),
        "is_test attribute should be set to False in training phase.");

737 738 739 740
    if (!input_grad && !filter_grad) return;

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
741 742
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
743

744
    bool is_conv3d = strides.size() == 3U;
745 746 747 748 749 750 751 752 753
    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
754
    int g = std::max(groups, 1);
Y
Yihua Xu 已提交
755
    GetWeightsTz(weights_tz, g, is_conv3d);
756 757
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

758 759
    auto src_format = input->format();
    mkldnn::memory::format weights_format =
Y
Yihua Xu 已提交
760
        GetWeightsFormat(filter->format(), g, is_conv3d);
761

762
    // Get an unique name from "argument" name of "Output" variable
J
Jacek Czaja 已提交
763
    // as well as attributes of primitive to be created
764
    // This name will be used as key when saving info into device context
J
Jacek Czaja 已提交
765 766 767
    const std::string key = platform::ConvMKLDNNHandler::GetHash(
        src_tz, weights_tz, strides, paddings, dilations, groups,
        ctx.op().Input("Output"));
768 769

    const std::string key_conv_pd = key + "@conv_pd";
770
    std::vector<primitive> pipeline;
771

772 773
    // Create user memory descriptors
    auto user_src_md = platform::MKLDNNMemDesc(
774
        {src_tz}, platform::MKLDNNGetDataType<T>(), src_format);
775
    auto user_weights_md = platform::MKLDNNMemDesc(
776
        {weights_tz}, platform::MKLDNNGetDataType<T>(), weights_format);
777 778
    auto user_diff_dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
779 780 781 782 783

    /* create memory descriptor for conv backward without specified format
     * ('any') which lets a primitive (conv backward in this case) choose
     * the memory format preferred for best performance
     */
784 785 786 787
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

788 789 790 791 792 793 794
    weights_format = mkldnn::memory::format::any;
    // Check the format for user's special output
    if (chosen_memory_format != mkldnn::memory::format::any) {
      if (is_conv3d) {
        chosen_memory_format =
            platform::MKLDNNFormatForSize(src_tz.size(), chosen_memory_format);
      }
795 796
    }

797
    auto src_md = platform::MKLDNNMemDesc(
798
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
799
    auto diff_src_md = platform::MKLDNNMemDesc(
800
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
801
    auto weights_md = platform::MKLDNNMemDesc(
802
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
803
    auto diff_weights_md = platform::MKLDNNMemDesc(
804
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
805
    auto diff_dst_md = platform::MKLDNNMemDesc(
806
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
807

808
    // Retrieve conv_pd from device context
809 810 811
    auto conv_pd =
        std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
            dev_ctx.GetBlob(key_conv_pd));
812 813 814
    PADDLE_ENFORCE(conv_pd != nullptr,
                   "Fail to find conv_pd in device context");

815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
    // create backward convolution weights primitive descriptor
    auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
        mkldnn::convolution_direct, src_md, diff_weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_weights_pd =
        std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
            conv_bwd_weights_desc, mkldnn_engine, *conv_pd);

    // create backward convolution data primitive descriptor
    auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
        mkldnn::convolution_direct, diff_src_md, weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_data_pd =
        std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
            conv_bwd_data_desc, mkldnn_engine, *conv_pd);

J
Jacek Czaja 已提交
831 832 833
    platform::ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd,
                                        conv_bwd_weights_pd, dev_ctx,
                                        mkldnn_engine, key);
834 835 836 837 838 839 840 841 842

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));
    auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
        user_diff_dst_md, to_void_cast<T>(output_grad_data));

843 844
    // create backward conv primitive for weights
    if (filter_grad) {
845 846
      auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
          user_src_memory_p, pipeline);
847

848 849 850 851
      auto diff_dst_memory_4filter_p =
          handler.AcquireDiffDstMemoryFromWeightsPrimitive(
              user_diff_dst_memory_p, pipeline);

852
      const size_t size = handler.GetDiffWeightsMemorySize();
Y
Yu Yang 已提交
853 854
      filter_grad_data = filter_grad->mutable_data<T>(
          ctx.GetPlace(), paddle::memory::Allocator::kDefault, size);
855

856 857 858 859 860 861 862 863 864
      auto diff_weights_memory_p =
          handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
              reinterpret_cast<void*>(filter_grad_data));

      auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights(
          src_memory_p, diff_dst_memory_4filter_p, diff_weights_memory_p);

      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_bwd_weights_p);
865 866

      filter_grad->set_layout(DataLayout::kMKLDNN);
867
      filter_grad->set_format(GetMKLDNNFormat(*diff_weights_memory_p));
868 869 870
    }

    if (input_grad) {
871 872 873 874 875 876 877
      auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
          user_weights_memory_p, pipeline);

      auto diff_dst_memory_4data_p =
          handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
                                                        pipeline);

878
      const size_t size = handler.GetDiffSourceMemorySize();
Y
Yu Yang 已提交
879 880
      input_grad_data = input_grad->mutable_data<T>(
          ctx.GetPlace(), paddle::memory::Allocator::kDefault, size);
881

882 883 884 885 886 887 888
      auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
          reinterpret_cast<void*>(input_grad_data));

      auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData(
          diff_dst_memory_4data_p, weights_memory_p, diff_src_memory_p);

      pipeline.push_back(*conv_bwd_data_p);
889 890

      input_grad->set_layout(DataLayout::kMKLDNN);
891
      input_grad->set_format(GetMKLDNNFormat(*diff_src_memory_p));
892
    }
893
    stream(stream::kind::eager).submit(pipeline).wait();
894 895 896 897 898 899 900 901
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

X
Xin Pan 已提交
902 903 904
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
905 906 907 908 909 910 911 912 913 914 915
                                    ops::ConvMKLDNNOpKernel<float, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, U8,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNOpKernel<uint8_t, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, S8,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNOpKernel<int8_t, float>);
X
Xin Pan 已提交
916 917 918 919 920

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float>);
921 922 923 924

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
925
                                    ops::ConvMKLDNNOpKernel<float, float>);
926 927 928 929 930

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float>);