memory_optimize_pass.cc 10.6 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h"
W
wanghuancoder 已提交
16

Y
Yan Chunwei 已提交
17
#include <algorithm>
18
#include <functional>
Y
Yan Chunwei 已提交
19
#include <limits>
20
#include <set>
Y
Yan Chunwei 已提交
21 22
#include <string>
#include <utility>
W
wanghuancoder 已提交
23

Y
Yan Chunwei 已提交
24
#include "paddle/fluid/framework/ir/graph_helper.h"
W
wanghuancoder 已提交
25 26 27 28 29 30 31 32 33

namespace paddle {
namespace framework {
namespace ir {
class Graph;
class Node;
}  // namespace ir
}  // namespace framework
}  // namespace paddle
Y
Yan Chunwei 已提交
34 35 36 37 38 39 40 41 42 43

namespace paddle {
namespace inference {
namespace analysis {

using framework::ir::Graph;
using framework::ir::Node;
using framework::ir::TopologyVarientSort;
using space_table_t = MemoryOptimizePass::space_table_t;

44 45 46 47 48 49 50 51
typedef struct {
  std::string name;
  size_t size;
  int cluster;
  std::pair<int, int> lifetime;
  std::unordered_set<std::string> adj;
} MemNode;

Y
Yan Chunwei 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
// Collect the lifecycles of the tensors.
// Traverse the graph in topological order.
// The traversal order also affect the lifecycles, so different sort_kind is
// used.
void MemoryOptimizePass::CollectLifeCycle(
    std::unordered_map<std::string, lifecycle_t>* lifecycles,
    int sort_kind) const {
  max_lifecycle_ = 0;
  for (auto* op_node : framework::ir::TopologyVarientSort(
           *graph_, static_cast<framework::ir::SortKind>(sort_kind))) {
    if (!op_node->IsOp()) continue;
    auto reads = op_node->inputs;
    auto writes = op_node->outputs;

    std::vector<Node*> requires(reads.begin(), reads.end());
    requires.insert(requires.end(), writes.begin(), writes.end());

    // Disable reuse of feed variables.
    if (op_node->Name() == "feed") {
      for (auto* node : op_node->outputs) {
        auto var = node->Name();
        lifecycles->emplace(var,
                            std::make_pair(0, std::numeric_limits<int>::max()));
      }
    } else {
      // Normal operators.
      for (const Node* node : requires) {
        if (node->Var()->Persistable()) continue;
        std::string var = node->Name();
        if (!lifecycles->count(var)) {
          (*lifecycles)[var] = std::make_pair(max_lifecycle_, max_lifecycle_);
        } else {
          (*lifecycles)[var].second =
              std::max(max_lifecycle_, lifecycles->at(var).second);  // max()
        }
      }
    }

    ++max_lifecycle_;
  }
}

94 95 96
void MemoryOptimizePass::CollectVarMemorySize(
    space_table_t* space_table) const {
  const int fake_batch_size = 1;
97

98
  auto valid_var = [&](framework::ir::Node* node) -> bool {
99 100
    std::set<std::string> invalid_op = {"while",
                                        "conditional_block",
101
                                        "tensorrt_engine",
102 103 104 105 106
                                        "conditional_block_infer",
                                        "merge_lod_tensor_infer",
                                        "merge_lod_tensor",
                                        "equal",
                                        "lod_reset"};
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    for (auto* tmp : node->inputs) {
      CHECK(tmp->IsOp());
      std::string op_type = tmp->Op()->Type();
      if (std::find(invalid_op.begin(), invalid_op.end(), op_type) !=
          invalid_op.end()) {
        return false;
      }
    }
    for (auto* tmp : node->outputs) {
      CHECK(tmp->IsOp());
      std::string op_type = tmp->Op()->Type();
      if (std::find(invalid_op.begin(), invalid_op.end(), op_type) !=
          invalid_op.end()) {
        return false;
      }
    }
    return true;
  };
125 126 127 128
  // Collect tensors from graph.
  for (auto* node : graph_->Nodes()) {
    if (node->IsVar() &&
        node->Var()->GetType() ==
129 130
            framework::proto::VarType::Type::VarType_Type_LOD_TENSOR &&
        valid_var(node)) {
131 132 133 134 135 136 137 138 139 140
      // Parameters will not be reused.
      if (node->Var()->Persistable()) continue;
      auto shape = node->Var()->GetShape();
      for (auto& v : shape) {
        if (v < 0) v = fake_batch_size;
      }

      int size = std::accumulate(shape.begin(), shape.end(), 1,
                                 std::multiplies<int>());
      (*space_table)[node->Var()->Name()] =
141
          size * paddle::framework::SizeOfType(node->Var()->GetDataType());
142 143 144 145 146 147 148 149 150 151 152
    }
  }
}

void MakeSimpleReusePlan(
    const std::unordered_map<std::string, std::pair<int, int>>& lifecycles,
    const std::unordered_map<std::string, size_t>& space_table,
    std::unordered_map<std::string, std::string>* node2cluster,
    std::unordered_map<std::string, int>* cluster_size) {
  std::vector<MemNode> mem_nodes;
  for (auto& data : lifecycles) {
153
    if (!space_table.count(data.first)) continue;
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
    MemNode temp_node;
    temp_node.name = data.first;
    temp_node.size = space_table.at(data.first);
    temp_node.cluster = -1;
    temp_node.lifetime = data.second;
    mem_nodes.push_back(temp_node);
  }
  auto overlap = [](std::pair<int, int> a, std::pair<int, int> b) -> bool {
    return b.second >= a.first && a.second >= b.first;
  };
  // If the lifetime of two nodes is overwritten, we set them as adjacent nodes.
  for (size_t i = 0; i < mem_nodes.size(); i++) {
    for (size_t j = i + 1; j < mem_nodes.size(); j++) {
      if (overlap(mem_nodes[i].lifetime, mem_nodes[j].lifetime)) {
        mem_nodes[i].adj.insert(mem_nodes[j].name);
        mem_nodes[j].adj.insert(mem_nodes[i].name);
      }
    }
  }

  // Sort the nodes according to the node memory size.
  auto sort_func = [](MemNode a, MemNode b) { return a.size > b.size; };
  std::sort(mem_nodes.begin(), mem_nodes.end(), sort_func);

  // Generating Memory Reuse Strategy Based on Greedy Way
  for (size_t i = 0; i < mem_nodes.size(); i++) {
    if (mem_nodes[i].cluster >= 0) continue;
    int cluster_index = cluster_size->size();
    mem_nodes[i].cluster = cluster_index;
    (*cluster_size)[mem_nodes[i].name] = mem_nodes[i].size;
    (*node2cluster)[mem_nodes[i].name] = mem_nodes[i].name;
    std::unordered_set<std::string> cluster_adj = mem_nodes[i].adj;
    for (size_t j = i + 1; j < mem_nodes.size(); j++) {
      if (mem_nodes[j].cluster < 0 &&
          (cluster_adj.find(mem_nodes[j].name) == cluster_adj.end())) {
        (*node2cluster)[mem_nodes[j].name] = mem_nodes[i].name;
        mem_nodes[j].cluster = cluster_index;
        for (auto& n : mem_nodes[j].adj) {
          cluster_adj.insert(n);
        }
      }
    }
  }
  for (auto& cluster : *cluster_size) {
    LOG(INFO) << "Cluster name : " << cluster.first
              << "  size: " << cluster.second;
  }
}

Y
Yan Chunwei 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
// NOTE The optimized opdesc doesn't match ir::Graph.
void UpdateOpDescsByReuse(
    Graph* graph,
    const std::unordered_map<std::string, std::string>& reuse_table,
    int sort_kind) {
  // TODO(Superjomn) change here to be compatible with the runtime order.
  for (auto* node : TopologyVarientSort(
           *graph, static_cast<framework::ir::SortKind>(sort_kind))) {
    if (node->IsOp()) {
      // Replace the original inputs/outputs with the reused tensors.
      std::unordered_map<std::string, std::vector<std::string>> in_args,
          out_args;
      for (auto argument : node->Op()->Inputs()) {
        for (const auto& x : argument.second) {
          auto name = x;
          if (reuse_table.count(x) && reuse_table.at(x) != x) {
            name = reuse_table.at(x);
          }
          in_args[argument.first].push_back(name);
          VLOG(4) << node->Name() << " input " << x << " -> " << name;
        }
      }

226 227
      // modify the graph
      for (auto input_node : node->inputs) {
228 229 230
        PADDLE_ENFORCE_EQ(input_node->IsVar(), true,
                          platform::errors::PreconditionNotMet(
                              "The input node should be a variable."));
231 232 233 234 235 236 237 238
        std::string input_node_name = input_node->Name();
        if (reuse_table.count(input_node_name) &&
            reuse_table.at(input_node_name) != input_node_name) {
          auto name = reuse_table.at(input_node_name);
          input_node->RenameVar(name);
        }
      }

Y
Yan Chunwei 已提交
239 240 241 242 243 244 245 246 247 248 249
      for (auto argument : node->Op()->Outputs()) {
        for (const auto& x : argument.second) {
          auto name = x;
          if (reuse_table.count(x) && reuse_table.at(x) != x) {
            name = reuse_table.at(x);
          }
          out_args[argument.first].push_back(name);
          VLOG(4) << node->Name() << " output " << x << " -> " << name;
        }
      }

250 251
      // modify the graph
      for (auto out_node : node->outputs) {
252 253 254
        PADDLE_ENFORCE_EQ(out_node->IsVar(), true,
                          platform::errors::PreconditionNotMet(
                              "The output node should be a variable."));
255 256 257 258 259 260 261 262
        std::string out_node_name = out_node->Name();
        if (reuse_table.count(out_node_name) &&
            reuse_table.at(out_node_name) != out_node_name) {
          auto name = reuse_table.at(out_node_name);
          out_node->RenameVar(name);
        }
      }

Y
Yan Chunwei 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
      // Update arguments.
      for (auto& arg : in_args) {
        node->Op()->SetInput(arg.first, arg.second);
      }
      for (auto& arg : out_args) {
        node->Op()->SetOutput(arg.first, arg.second);
      }
      node->Op()->Flush();
    }
  }
}

std::string MemoryOptimizePass::repr() const { return "memory optimize pass"; }

void MemoryOptimizePass::RunImpl(Argument* argument) {
278 279 280 281 282 283 284 285 286 287 288
  // Memory optimization.
  // We will perform the following operation:
  // 1. Collect all var's lifetime.
  // 2. Make reuse plan: the vars can be reused if there is no overlap(on
  // lifetime) between
  // them.
  // The final plan is a mapping table in which the key represents the original
  // name of var and the value in the table represents the current name of var.
  // 3. Perform reuse plan: Replace all var's name in the model according to the
  // mapping table.
  if (!argument->enable_memory_optim()) return;
Y
Yan Chunwei 已提交
289 290
  graph_ = argument->main_graph_ptr();

291 292
  int sort_kind = 0;
  std::unordered_map<std::string, lifecycle_t> lifecycles;
Y
Yan Chunwei 已提交
293
  space_table_t space_table;
294 295 296 297 298 299 300 301
  std::unordered_map<std::string, std::string> node2cluster;
  std::unordered_map<std::string, int> cluster_size;

  CollectLifeCycle(&lifecycles, sort_kind);
  CollectVarMemorySize(&space_table);
  MakeSimpleReusePlan(lifecycles, space_table, &node2cluster, &cluster_size);
  UpdateOpDescsByReuse(graph_, node2cluster, sort_kind);
  return;
Y
Yan Chunwei 已提交
302 303 304 305 306
}

}  // namespace analysis
}  // namespace inference
}  // namespace paddle