test_prelu_op.py 16.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Z
zchen0211 已提交
17 18
import unittest
import numpy as np
19
import paddle.fluid as fluid
M
minqiyang 已提交
20
import six
21
import paddle.fluid.core as core
22
from paddle.fluid import Program, program_guard
23
from op_test import OpTest, skip_check_grad_ci
24 25
import paddle
import paddle.nn.functional as F
26
from paddle.fluid.framework import _test_eager_guard
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52


def ref_prelu(x, weight):
    x_t = x.copy()
    weight = weight.reshape(1, -1, 1, 1)
    neg_indices = x <= 0
    assert x.shape == neg_indices.shape
    x_t[neg_indices] = (x_t * weight)[neg_indices]
    return (x_t, )


def ref_prelu_nn(x, num_parameters, init):
    weight_np = np.full((num_parameters), init)
    return ref_prelu(x, weight_np)


class TestFunctionalPReluAPI(unittest.TestCase):
    def setUp(self):
        self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda(
        ) else paddle.CPUPlace()
        self.x_np = np.random.uniform(-1., 1., [1, 2, 3, 4]).astype('float32')
        self.weight_np_0 = np.random.randn(1).astype('float32')
        self.weight_np_1 = np.random.randn(self.x_np.shape[1]).astype('float32')

    def static_check(self, weight_np):
        with paddle.static.program_guard(paddle.static.Program()):
53 54
            x = paddle.fluid.data('X', self.x_np.shape, 'float32')
            weight = paddle.fluid.data('Alpha', weight_np.shape, 'float32')
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
            out = F.prelu(x, weight)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np,
                                'Alpha': weight_np},
                          fetch_list=[out])
        out_ref = ref_prelu(self.x_np, weight_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def dygraph_check(self, weight_np):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        weight = paddle.to_tensor(weight_np)
        out = F.prelu(x, weight)
        out_ref = ref_prelu(self.x_np, weight_np)
        self.assertEqual(np.allclose(out_ref, out.numpy()), True)
        paddle.enable_static()

    def test_static_api(self):
        self.static_check(self.weight_np_0)
        self.static_check(self.weight_np_1)
Z
zchen0211 已提交
75

76 77 78
    def test_dygraph_api(self):
        self.dygraph_check(self.weight_np_0)
        self.dygraph_check(self.weight_np_1)
Z
zchen0211 已提交
79

80 81 82 83
    def test_dygraph_api_eager(self):
        with _test_eager_guard():
            self.test_dygraph_api()

84 85
    def test_error(self):
        with paddle.static.program_guard(paddle.static.Program()):
86
            weight_fp32 = paddle.fluid.data(
87
                name='weight_fp32', shape=[1], dtype='float32')
88
            # The input type must be Variable.
89
            self.assertRaises(TypeError, F.prelu, x=1, weight=weight_fp32)
90
            # The input dtype must be float16, float32, float64.
91 92
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[2, 3], dtype='int32')
93 94
            self.assertRaises(TypeError, F.prelu, x=x_int32, weight=weight_fp32)
            # support the input dtype is float16
95 96
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[2, 3], dtype='float16')
97 98 99 100 101 102 103 104 105 106 107 108 109
            F.prelu(x=x_fp16, weight=weight_fp32)


class TestNNPReluAPI(unittest.TestCase):
    def setUp(self):
        self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda(
        ) else paddle.CPUPlace()
        self.x_np = np.ones([1, 2, 3, 4]).astype('float32')

    def test_static_api(self):
        startup_program = paddle.static.Program()
        train_program = paddle.static.Program()
        with paddle.static.program_guard(train_program, startup_program):
110 111
            x = paddle.fluid.data(
                name='X', shape=self.x_np.shape, dtype='float32')
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
            m = paddle.nn.PReLU()
            out = m(x)
            exe = paddle.static.Executor(self.place)
            exe.run(startup_program)
            res = exe.run(train_program,
                          feed={'X': self.x_np},
                          fetch_list=[out])
        out_ref = ref_prelu_nn(self.x_np, 1, 0.25)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)

        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.PReLU()
        out = m(x)
        out_ref = ref_prelu_nn(self.x_np, 1, 0.25)
        self.assertEqual(np.allclose(out_ref, out.numpy()), True)

        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.PReLU(num_parameters=self.x_np.shape[1])
        out = m(x)
        out_ref = ref_prelu_nn(self.x_np, self.x_np.shape[1], 0.25)
        self.assertEqual(np.allclose(out_ref, out.numpy()), True)

        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.PReLU(init=0.5)
        out = m(x)
        out_ref = ref_prelu_nn(self.x_np, 1, 0.5)
        self.assertEqual(np.allclose(out_ref, out.numpy()), True)

        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.PReLU(weight_attr=fluid.ParamAttr(name="weight"))
        out = m(x)
        out_ref = ref_prelu_nn(self.x_np, 1, 0.25)
        self.assertEqual(np.allclose(out_ref, out.numpy()), True)

        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.PReLU(weight_attr=fluid.ParamAttr(
            initializer=fluid.initializer.Constant(0.5)))
        out = m(x)
        out_ref = ref_prelu_nn(self.x_np, 1, 0.5)
        self.assertEqual(np.allclose(out_ref, out.numpy()), True)

        paddle.enable_static()
157 158


159 160 161 162 163
def prelu_api_wrapper(x, weight, data_format="NCHW"):
    weight = weight.reshape([-1])
    return paddle.nn.functional.prelu(x, weight, data_format, name=None)


Z
zchen0211 已提交
164
class PReluTest(OpTest):
Z
zchen0211 已提交
165
    def setUp(self):
C
cc 已提交
166
        self.init_dtype()
167
        self.init_input_shape()
168
        self.eager_mode = True
169
        self.init_attr()
Z
zchen0211 已提交
170
        self.op_type = "prelu"
171
        self.python_api = prelu_api_wrapper
J
jerrywgz 已提交
172

C
cc 已提交
173
        x_np = np.random.uniform(-1, 1, self.x_shape).astype(self.dtype)
J
jerrywgz 已提交
174 175 176 177
        # Since zero point in prelu is not differentiable, avoid randomize
        # zero.
        x_np[np.abs(x_np) < 0.005] = 0.02

178 179 180 181 182 183 184
        if self.attrs == {
                'mode': "all",
                "data_format": "NCHW"
        } or self.attrs == {
                'mode': "all",
                "data_format": "NHWC"
        }:
185
            alpha_np = np.random.uniform(-1, -0.5, (1))
186
        elif self.attrs == {'mode': "channel", "data_format": "NCHW"}:
187
            alpha_np = np.random.uniform(-1, -0.5, [1, self.x_shape[1], 1, 1])
188 189
        elif self.attrs == {'mode': "channel", "data_format": "NHWC"}:
            alpha_np = np.random.uniform(-1, -0.5, [1, 1, 1, self.x_shape[-1]])
J
jerrywgz 已提交
190
        else:
191
            alpha_np = np.random.uniform(-1, -0.5, [1] + self.x_shape[1:])
192 193
            # eager check don't support mode = 'all'
            self.eager_mode = False
C
cc 已提交
194
        alpha_np = alpha_np.astype(self.dtype)
195

196
        self.inputs = {'X': x_np, 'Alpha': alpha_np}
J
jerrywgz 已提交
197

198 199 200
        # NOTE(zhiqu): reshape inputs['Alpha'] from [1, 100, 1, 1] to [1, 100] + [1]*len(x.shape[2:])
        # since np operands could not be broadcast together with shapes (1,100,2,2,2,3) (1,100,1,1) 	
        reshaped_alpha = self.inputs['Alpha']
201
        if self.attrs == {'mode': "channel", "data_format": "NCHW"}:
202
            reshaped_alpha = np.reshape(
203 204
                self.inputs['Alpha'],
                [1, self.x_shape[1]] + [1] * len(self.x_shape[2:]))
205 206 207 208
        elif self.attrs == {'mode': "channel", "data_format": "NHWC"}:
            reshaped_alpha = np.reshape(
                self.inputs['Alpha'],
                [1] + [1] * len(self.x_shape[1:-1]) + [self.x_shape[-1]])
Z
zchen0211 已提交
209
        out_np = np.maximum(self.inputs['X'], 0.)
210
        out_np = out_np + np.minimum(self.inputs['X'], 0.) * reshaped_alpha
Z
zchen0211 已提交
211 212
        assert out_np is not self.inputs['X']
        self.outputs = {'Out': out_np}
Z
zchen0211 已提交
213

C
cc 已提交
214 215 216
    def init_dtype(self):
        self.dtype = np.float64

217
    def init_input_shape(self):
218
        self.x_shape = [2, 100, 3, 4]
219 220

    def init_attr(self):
221
        self.attrs = {'mode': "channel", "data_format": "NCHW"}
J
jerrywgz 已提交
222

223
    def test_check_output(self):
224
        self.check_output(check_eager=self.eager_mode)
Z
zchen0211 已提交
225

226
    def test_check_grad(self):
227
        self.check_grad(['X', 'Alpha'], 'Out', check_eager=self.eager_mode)
J
jerrywgz 已提交
228 229


230 231 232 233 234
@skip_check_grad_ci(
    reason="[skip shape check] Input(Alpha) must be 1-D and only has one data in 'all' mode"
)
class TestModeAll(PReluTest):
    def init_input_shape(self):
235
        self.x_shape = [2, 3, 4, 5]
M
minqiyang 已提交
236

237
    def init_attr(self):
238 239 240 241 242 243 244 245 246 247 248 249
        self.attrs = {'mode': "all", "data_format": "NCHW"}


@skip_check_grad_ci(
    reason="[skip shape check] Input(Alpha) must be 1-D and only has one data in 'all' mode"
)
class TestModeAllNHWC(PReluTest):
    def init_input_shape(self):
        self.x_shape = [2, 3, 4, 50]

    def init_attr(self):
        self.attrs = {'mode': "all", "data_format": "NHWC"}
M
minqiyang 已提交
250

Z
zchen0211 已提交
251

252 253
class TestModeElt(PReluTest):
    def init_input_shape(self):
254 255 256
        self.x_shape = [3, 2, 5, 10]

    def init_attr(self):
257 258 259 260 261 262 263 264 265
        self.attrs = {'mode': "element", "data_format": "NCHW"}


class TestModeEltNHWC(PReluTest):
    def init_input_shape(self):
        self.x_shape = [3, 2, 5, 10]

    def init_attr(self):
        self.attrs = {'mode': "element", "data_format": "NHWC"}
266 267 268 269 270 271 272 273 274 275


@skip_check_grad_ci(
    reason="[skip shape check] Input(Alpha) must be 1-D and only has one data in 'all' mode"
)
class TestModeAllRank3(PReluTest):
    def init_input_shape(self):
        self.x_shape = [1, 200, 3]

    def init_attr(self):
276 277 278 279 280 281 282 283 284 285 286 287
        self.attrs = {'mode': "all", "data_format": "NCHW"}


@skip_check_grad_ci(
    reason="[skip shape check] Input(Alpha) must be 1-D and only has one data in 'all' mode"
)
class TestModeAllRank3NHWC(PReluTest):
    def init_input_shape(self):
        self.x_shape = [1, 200, 3]

    def init_attr(self):
        self.attrs = {'mode': "all", "data_format": "NHWC"}
288 289 290 291 292 293 294 295 296 297


@skip_check_grad_ci(
    reason="[skip shape check] Input(Alpha) must be 1-D and only has one data in 'all' mode"
)
class TestModeAllRank6(PReluTest):
    def init_input_shape(self):
        self.x_shape = [1, 2, 3, 4, 5, 6]

    def init_attr(self):
298 299 300 301 302 303 304 305 306 307 308 309
        self.attrs = {'mode': "all", "data_format": "NCHW"}


@skip_check_grad_ci(
    reason="[skip shape check] Input(Alpha) must be 1-D and only has one data in 'all' mode"
)
class TestModeAllRank6NHWC(PReluTest):
    def init_input_shape(self):
        self.x_shape = [1, 2, 3, 4, 5, 6]

    def init_attr(self):
        self.attrs = {'mode': "all", "data_format": "NHWC"}
310 311 312 313 314 315 316


class TestModeChannelRank3(PReluTest):
    def init_input_shape(self):
        self.x_shape = [1, 200, 3]

    def init_attr(self):
317 318 319 320 321 322 323 324 325
        self.attrs = {'mode': "channel", "data_format": "NCHW"}


class TestModeChannelRank3NHWC(PReluTest):
    def init_input_shape(self):
        self.x_shape = [1, 3, 100]

    def init_attr(self):
        self.attrs = {'mode': "channel", "data_format": "NHWC"}
326 327 328 329 330 331 332


class TestModeChannelRank6(PReluTest):
    def init_input_shape(self):
        self.x_shape = [1, 100, 2, 2, 2, 2]

    def init_attr(self):
333 334 335 336 337 338 339 340 341
        self.attrs = {'mode': "channel", "data_format": "NCHW"}


class TestModeChannelRank6NHWC(PReluTest):
    def init_input_shape(self):
        self.x_shape = [1, 2, 2, 2, 2, 100]

    def init_attr(self):
        self.attrs = {'mode': "channel", "data_format": "NHWC"}
342 343 344 345 346 347 348


class TestModeElementRank3(PReluTest):
    def init_input_shape(self):
        self.x_shape = [3, 10, 10]

    def init_attr(self):
349 350 351 352 353 354 355 356 357
        self.attrs = {'mode': "element", "data_format": "NCHW"}


class TestModeElementRank3NHWC(PReluTest):
    def init_input_shape(self):
        self.x_shape = [3, 10, 10]

    def init_attr(self):
        self.attrs = {'mode': "element", "data_format": "NHWC"}
358 359 360 361 362


class TestModeElementRank6(PReluTest):
    def init_input_shape(self):
        self.x_shape = [3, 2, 2, 4, 5, 2]
Z
zchen0211 已提交
363

364
    def init_attr(self):
365 366 367 368 369 370 371 372 373
        self.attrs = {'mode': "element", "data_format": "NCHW"}


class TestModeElementRank6NHWC(PReluTest):
    def init_input_shape(self):
        self.x_shape = [3, 2, 2, 4, 5, 2]

    def init_attr(self):
        self.attrs = {'mode': "element", "data_format": "NHWC"}
374 375


C
cc 已提交
376 377 378 379 380 381 382 383 384 385 386 387 388 389
def create_test_fp16_class(parent,
                           check_grad=True,
                           atol=1e-3,
                           max_relative_error=0.05):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestPReluFp16Case(parent):
        def init_dtype(self):
            self.dtype = np.float16

        def test_check_output(self):
            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
390
                    self.check_output_with_place(
391
                        place, atol=atol, check_eager=self.eager_mode)
C
cc 已提交
392 393 394 395 396 397 398

        def test_check_grad(self):
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place) and check_grad:
                self.check_grad_with_place(
                    place, ['X', 'Alpha'],
                    'Out',
399
                    max_relative_error=max_relative_error,
400
                    check_eager=self.eager_mode)
C
cc 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413

    cls_name = "{0}_{1}".format(parent.__name__, "Fp16Op")
    TestPReluFp16Case.__name__ = cls_name
    globals()[cls_name] = TestPReluFp16Case


create_test_fp16_class(TestModeElt)
create_test_fp16_class(TestModeAllRank3)
create_test_fp16_class(TestModeAllRank6)
create_test_fp16_class(TestModeChannelRank3)
create_test_fp16_class(TestModeChannelRank6)
create_test_fp16_class(TestModeElementRank3)
create_test_fp16_class(TestModeElementRank6)
414 415 416 417 418 419 420
create_test_fp16_class(TestModeEltNHWC)
create_test_fp16_class(TestModeAllRank3NHWC)
create_test_fp16_class(TestModeAllRank6NHWC)
create_test_fp16_class(TestModeChannelRank3NHWC)
create_test_fp16_class(TestModeChannelRank6NHWC)
create_test_fp16_class(TestModeElementRank3NHWC)
create_test_fp16_class(TestModeElementRank6NHWC)
C
cc 已提交
421 422


423
def prelu_t(x, mode, param_attr=None, name=None, data_format='NCHW'):
424 425 426 427 428 429 430 431 432 433 434 435 436 437
    helper = fluid.layer_helper.LayerHelper('prelu', **locals())
    alpha_shape = [1, x.shape[1], 1, 1]
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=helper.param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=fluid.initializer.ConstantInitializer(0.25))
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
438 439
        attrs={"mode": mode,
               'data_format': data_format},
440 441 442 443 444 445
        outputs={"Out": out})
    return out


# error message test if mode is not one of 'all', 'channel', 'element'
class TestModeError(unittest.TestCase):
446 447 448 449 450
    def setUp(self):
        self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda(
        ) else paddle.CPUPlace()
        self.x_np = np.ones([1, 2, 3, 4]).astype('float32')

451 452 453 454 455 456 457
    def test_mode_error(self):
        main_program = Program()
        with fluid.program_guard(main_program, Program()):
            x = fluid.data(name='x', shape=[2, 3, 4, 5])
            try:
                y = prelu_t(x, 'any')
            except Exception as e:
458
                assert (e.args[0].find('InvalidArgument') != -1)
459

460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
    def test_data_format_error1(self):
        main_program = Program()
        with fluid.program_guard(main_program, Program()):
            x = fluid.data(name='x', shape=[2, 3, 4, 5])
            try:
                y = prelu_t(x, 'channel', data_format='N')
            except Exception as e:
                assert (e.args[0].find('InvalidArgument') != -1)

    def test_data_format_error2(self):
        main_program = Program()
        with fluid.program_guard(main_program, Program()):
            x = fluid.data(name='x', shape=[2, 3, 4, 5])
            try:
                y = paddle.static.nn.prelu(x, 'channel', data_format='N')
            except ValueError as e:
                pass

478

Z
zchen0211 已提交
479 480
if __name__ == "__main__":
    unittest.main()