test_one_hot_op.py 6.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Y
Yang yaming 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yang yaming 已提交
17 18 19
import unittest
import numpy as np
import math
20
from op_test import OpTest
21
import paddle
22 23 24 25
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.framework as framework
from paddle.fluid.framework import Program, program_guard
Y
Yang yaming 已提交
26 27 28 29 30 31


class TestOneHotOp(OpTest):
    def setUp(self):
        self.op_type = 'one_hot'
        depth = 10
32
        depth_np = np.array(10).astype('int32')
Y
Yang yaming 已提交
33
        dimension = 12
34
        x_lod = [[4, 1, 3, 3]]
35
        x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
36 37 38 39 40 41 42 43 44 45 46 47 48
        x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1])

        out = np.zeros(shape=(np.product(x.shape[:-1]),
                              depth)).astype('float32')

        for i in range(np.product(x.shape)):
            out[i, x[i]] = 1.0

        self.inputs = {'X': (x, x_lod), 'depth_tensor': depth_np}
        self.attrs = {'dtype': int(core.VarDesc.VarType.FP32)}
        self.outputs = {'Out': (out, x_lod)}

    def test_check_output(self):
H
hong 已提交
49
        self.check_output(check_dygraph=False)
50 51 52 53 54 55 56 57 58 59


class TestOneHotOp_attr(OpTest):
    def setUp(self):
        self.op_type = 'one_hot'
        depth = 10
        dimension = 12
        x_lod = [[4, 1, 3, 3]]
        x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
        x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1])
Y
Yang yaming 已提交
60 61 62 63

        out = np.zeros(shape=(np.product(x.shape[:-1]),
                              depth)).astype('float32')

64
        for i in range(np.product(x.shape)):
Y
Yang yaming 已提交
65 66 67
            out[i, x[i]] = 1.0

        self.inputs = {'X': (x, x_lod)}
68
        self.attrs = {'dtype': int(core.VarDesc.VarType.FP32), 'depth': depth}
Y
Yang yaming 已提交
69 70 71
        self.outputs = {'Out': (out, x_lod)}

    def test_check_output(self):
H
hong 已提交
72
        self.check_output(check_dygraph=False)
Y
Yang yaming 已提交
73 74 75


class TestOneHotOp_default_dtype(OpTest):
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    def setUp(self):
        self.op_type = 'one_hot'
        depth = 10
        depth_np = np.array(10).astype('int32')
        dimension = 12
        x_lod = [[4, 1, 3, 3]]
        x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
        x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1])

        out = np.zeros(shape=(np.product(x.shape[:-1]),
                              depth)).astype('float32')

        for i in range(np.product(x.shape)):
            out[i, x[i]] = 1.0

        self.inputs = {'X': (x, x_lod), 'depth_tensor': depth_np}
        self.attrs = {}
        self.outputs = {'Out': (out, x_lod)}

    def test_check_output(self):
H
hong 已提交
96
        self.check_output(check_dygraph=False)
97 98 99


class TestOneHotOp_default_dtype_attr(OpTest):
Y
Yang yaming 已提交
100 101 102 103
    def setUp(self):
        self.op_type = 'one_hot'
        depth = 10
        dimension = 12
104
        x_lod = [[4, 1, 3, 3]]
105
        x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
106
        x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1])
Y
Yang yaming 已提交
107 108 109 110

        out = np.zeros(shape=(np.product(x.shape[:-1]),
                              depth)).astype('float32')

111
        for i in range(np.product(x.shape)):
Y
Yang yaming 已提交
112 113 114 115 116 117 118
            out[i, x[i]] = 1.0

        self.inputs = {'X': (x, x_lod)}
        self.attrs = {'depth': depth}
        self.outputs = {'Out': (out, x_lod)}

    def test_check_output(self):
H
hong 已提交
119
        self.check_output(check_dygraph=False)
Y
Yang yaming 已提交
120 121


122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
class TestOneHotOp_out_of_range(OpTest):
    def setUp(self):
        self.op_type = 'one_hot'
        depth = 10
        x_lod = [[4, 1, 3, 3]]
        x = [np.random.choice([-1, depth]) for i in range(sum(x_lod[0]))]
        x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1])

        out = np.zeros(shape=(np.product(x.shape[:-1]),
                              depth)).astype('float32')

        self.inputs = {'X': (x, x_lod)}
        self.attrs = {'depth': depth, 'allow_out_of_range': True}
        self.outputs = {'Out': (out, x_lod)}

    def test_check_output(self):
H
hong 已提交
138
        self.check_output(check_dygraph=False)
139 140


141
class TestOneHotOp_exception(unittest.TestCase):
Y
Yang yaming 已提交
142 143 144 145 146 147
    def setUp(self):
        self.op_type = 'one_hot'
        self.depth = 10
        self.place = core.CPUPlace()
        self.dimension = 12
        self.x = core.LoDTensor()
148
        x_lod = [[4, 1, 3, 3]]
149
        data = [np.random.randint(11, 20) for i in range(sum(x_lod[0]))]
150
        data = np.array(data).astype('int').reshape([sum(x_lod[0]), 1])
Y
Yang yaming 已提交
151
        self.x.set(data, self.place)
152
        self.x.set_recursive_sequence_lengths(x_lod)
Y
Yang yaming 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

    def test_check_output(self):
        program = Program()
        with program_guard(program):
            x = fluid.layers.data(
                name='x', shape=[self.dimension], dtype='float32', lod_level=1)
            block = program.current_block()
            one_hot_out = block.create_var(
                name="one_hot_out",
                type=core.VarDesc.VarType.LOD_TENSOR,
                dtype='float32')
            block.append_op(
                type='one_hot',
                inputs={'X': x},
                attrs={'depth': self.depth},
                outputs={'Out': one_hot_out})
            exe = fluid.Executor(self.place)

            def run():
                exe.run(feed={'x': self.x},
                        fetch_list=[one_hot_out],
                        return_numpy=False)

176
            self.assertRaises(ValueError, run)
Y
Yang yaming 已提交
177 178


179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
class TestOneHotOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            # the input must be Variable
            in_w = np.random.random((4, 1)).astype("int32")
            self.assertRaises(TypeError, fluid.layers.one_hot, in_w)
            # the input must be int32 or int 64
            in_w2 = fluid.layers.data(
                name="in_w2",
                shape=[4, 1],
                append_batch_size=False,
                dtype="float32")
            self.assertRaises(TypeError, fluid.layers.one_hot, in_w2)
            # the depth must be int, long or Variable
            in_r = fluid.layers.data(
                name="in_r",
                shape=[4, 1],
                append_batch_size=False,
                dtype="int32")
            depth_w = np.array([4])
            self.assertRaises(TypeError, fluid.layers.one_hot, in_r, 4.1)
            self.assertRaises(TypeError, fluid.layers.one_hot, in_r, depth_w)


Y
Yang yaming 已提交
203
if __name__ == '__main__':
204
    paddle.enable_static()
Y
Yang yaming 已提交
205
    unittest.main()