test_bce_loss.py 12.0 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.fluid as fluid
import numpy as np
import unittest
from op_test import OpTest


22 23 24 25 26 27 28 29
def test_static_layer(place,
                      input_np,
                      label_np,
                      reduction='mean',
                      weight_np=None):
    prog = paddle.static.Program()
    startup_prog = paddle.static.Program()
    with paddle.static.program_guard(prog, startup_prog):
30 31 32 33 34 35
        input = paddle.fluid.data(name='input',
                                  shape=input_np.shape,
                                  dtype='float64')
        label = paddle.fluid.data(name='label',
                                  shape=label_np.shape,
                                  dtype='float64')
36
        if weight_np is not None:
37 38 39 40 41
            weight = paddle.fluid.data(name='weight',
                                       shape=weight_np.shape,
                                       dtype='float64')
            bce_loss = paddle.nn.loss.BCELoss(weight=weight,
                                              reduction=reduction)
42 43 44 45
        else:
            bce_loss = paddle.nn.loss.BCELoss(reduction=reduction)
        res = bce_loss(input, label)
        exe = paddle.static.Executor(place)
46 47 48 49 50 51 52 53 54 55
        static_result, = exe.run(prog,
                                 feed={
                                     "input": input_np,
                                     "label": label_np
                                 } if weight_np is None else {
                                     "input": input_np,
                                     "label": label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[res])
56 57 58 59 60 61 62 63 64 65 66
    return static_result


def test_static_functional(place,
                           input_np,
                           label_np,
                           reduction='mean',
                           weight_np=None):
    prog = paddle.static.Program()
    startup_prog = paddle.static.Program()
    with paddle.static.program_guard(prog, startup_prog):
67 68 69 70 71 72
        input = paddle.fluid.data(name='input',
                                  shape=input_np.shape,
                                  dtype='float64')
        label = paddle.fluid.data(name='label',
                                  shape=label_np.shape,
                                  dtype='float64')
73
        if weight_np is not None:
74 75 76 77 78 79 80
            weight = paddle.fluid.data(name='weight',
                                       shape=weight_np.shape,
                                       dtype='float64')
            res = paddle.nn.functional.binary_cross_entropy(input,
                                                            label,
                                                            weight=weight,
                                                            reduction=reduction)
81
        else:
82 83 84
            res = paddle.nn.functional.binary_cross_entropy(input,
                                                            label,
                                                            reduction=reduction)
85
        exe = paddle.static.Executor(place)
86 87 88 89 90 91 92 93 94 95
        static_result, = exe.run(prog,
                                 feed={
                                     "input": input_np,
                                     "label": label_np
                                 } if weight_np is None else {
                                     "input": input_np,
                                     "label": label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[res])
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
    return static_result


def test_dygraph_layer(place,
                       input_np,
                       label_np,
                       reduction='mean',
                       weight_np=None):
    paddle.disable_static()
    if weight_np is not None:
        weight = paddle.to_tensor(weight_np)
        bce_loss = paddle.nn.loss.BCELoss(weight=weight, reduction=reduction)
    else:
        bce_loss = paddle.nn.loss.BCELoss(reduction=reduction)
    dy_res = bce_loss(paddle.to_tensor(input_np), paddle.to_tensor(label_np))
    dy_result = dy_res.numpy()
    paddle.enable_static()
    return dy_result


def test_dygraph_functional(place,
                            input_np,
                            label_np,
                            reduction='mean',
                            weight_np=None):
    paddle.disable_static()
    input = paddle.to_tensor(input_np)
    label = paddle.to_tensor(label_np)

    if weight_np is not None:
        weight = paddle.to_tensor(weight_np)
127 128 129 130
        dy_res = paddle.nn.functional.binary_cross_entropy(input,
                                                           label,
                                                           weight=weight,
                                                           reduction=reduction)
131
    else:
132 133 134
        dy_res = paddle.nn.functional.binary_cross_entropy(input,
                                                           label,
                                                           reduction=reduction)
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    dy_result = dy_res.numpy()
    paddle.enable_static()
    return dy_result


def calc_bceloss(input_np, label_np, reduction='mean', weight_np=None):
    if weight_np is None:
        expected = -1 * (label_np * np.log(input_np) +
                         (1. - label_np) * np.log(1. - input_np))
    else:
        expected = -1 * weight_np * (label_np * np.log(input_np) +
                                     (1. - label_np) * np.log(1. - input_np))

    if reduction == 'mean':
        expected = np.mean(expected)
    elif reduction == 'sum':
        expected = np.sum(expected)
    else:
        expected = expected

    return expected


C
ceci3 已提交
158
class TestBCELoss(unittest.TestCase):
159

C
ceci3 已提交
160
    def test_BCELoss(self):
161 162
        input_np = np.random.uniform(0.1, 0.8, size=(20, 30)).astype(np.float64)
        label_np = np.random.randint(0, 2, size=(20, 30)).astype(np.float64)
C
ceci3 已提交
163 164 165 166 167
        places = [fluid.CPUPlace()]
        if fluid.core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        reductions = ['sum', 'mean', 'none']
        for place in places:
168 169 170 171 172 173
            for reduction in reductions:
                static_result = test_static_layer(place, input_np, label_np,
                                                  reduction)
                dy_result = test_dygraph_layer(place, input_np, label_np,
                                               reduction)
                expected = calc_bceloss(input_np, label_np, reduction)
174 175 176
                np.testing.assert_allclose(static_result, expected, rtol=1e-05)
                np.testing.assert_allclose(static_result, dy_result, rtol=1e-05)
                np.testing.assert_allclose(dy_result, expected, rtol=1e-05)
177 178
                static_functional = test_static_functional(
                    place, input_np, label_np, reduction)
179 180
                dy_functional = test_dygraph_functional(place, input_np,
                                                        label_np, reduction)
181 182 183 184 185 186 187
                np.testing.assert_allclose(static_functional,
                                           expected,
                                           rtol=1e-05)
                np.testing.assert_allclose(static_functional,
                                           dy_functional,
                                           rtol=1e-05)
                np.testing.assert_allclose(dy_functional, expected, rtol=1e-05)
C
ceci3 已提交
188 189

    def test_BCELoss_weight(self):
190 191 192 193
        input_np = np.random.uniform(0.1, 0.8,
                                     size=(2, 3, 4, 10)).astype(np.float64)
        label_np = np.random.randint(0, 2,
                                     size=(2, 3, 4, 10)).astype(np.float64)
C
ceci3 已提交
194
        weight_np = np.random.random(size=(3, 4, 10)).astype(np.float64)
195 196
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
197
        for reduction in ['sum', 'mean', 'none']:
198 199 200 201 202 203 204 205 206 207 208 209 210 211
            static_result = test_static_layer(place,
                                              input_np,
                                              label_np,
                                              reduction,
                                              weight_np=weight_np)
            dy_result = test_dygraph_layer(place,
                                           input_np,
                                           label_np,
                                           reduction,
                                           weight_np=weight_np)
            expected = calc_bceloss(input_np,
                                    label_np,
                                    reduction,
                                    weight_np=weight_np)
212 213 214
            np.testing.assert_allclose(static_result, expected, rtol=1e-05)
            np.testing.assert_allclose(static_result, dy_result, rtol=1e-05)
            np.testing.assert_allclose(dy_result, expected, rtol=1e-05)
215 216 217 218 219 220 221 222 223 224
            static_functional = test_static_functional(place,
                                                       input_np,
                                                       label_np,
                                                       reduction,
                                                       weight_np=weight_np)
            dy_functional = test_dygraph_functional(place,
                                                    input_np,
                                                    label_np,
                                                    reduction,
                                                    weight_np=weight_np)
225 226 227 228 229
            np.testing.assert_allclose(static_functional, expected, rtol=1e-05)
            np.testing.assert_allclose(static_functional,
                                       dy_functional,
                                       rtol=1e-05)
            np.testing.assert_allclose(dy_functional, expected, rtol=1e-05)
230 231 232

    def test_BCELoss_error(self):
        paddle.disable_static()
233 234 235
        self.assertRaises(ValueError,
                          paddle.nn.loss.BCELoss,
                          reduction="unsupport reduction")
236 237
        input = paddle.to_tensor([[0.1, 0.3]], dtype='float32')
        label = paddle.to_tensor([[0.0, 1.0]], dtype='float32')
238 239 240 241 242
        self.assertRaises(ValueError,
                          paddle.nn.functional.binary_cross_entropy,
                          input=input,
                          label=label,
                          reduction="unsupport reduction")
243 244
        paddle.enable_static()

C
ceci3 已提交
245 246 247 248 249 250

def bce_loss(input, label):
    return -1 * (label * np.log(input) + (1. - label) * np.log(1. - input))


class TestBceLossOp(OpTest):
251

C
ceci3 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
    def setUp(self):
        self.init_test_case()
        self.op_type = "bce_loss"
        input_np = np.random.uniform(0.1, 0.8, self.shape).astype("float64")
        label_np = np.random.randint(0, 2, self.shape).astype("float64")
        output_np = bce_loss(input_np, label_np)

        self.inputs = {'X': input_np, 'Label': label_np}
        self.outputs = {'Out': output_np}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')

    def init_test_case(self):
        self.shape = [10, 10]


C
ceci3 已提交
272
class TestBceLossOpCase1(OpTest):
273

C
ceci3 已提交
274 275 276 277 278
    def init_test_cast(self):
        self.shape = [2, 3, 4, 5]


class TestBceLossOpCase2(OpTest):
279

C
ceci3 已提交
280 281 282 283
    def init_test_cast(self):
        self.shape = [2, 3, 20]


C
ceci3 已提交
284
if __name__ == "__main__":
H
hong 已提交
285
    paddle.enable_static()
C
ceci3 已提交
286
    unittest.main()