conv_op.cc 10.9 KB
Newer Older
C
chengduoZH 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

3 4 5
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
C
chengduoZH 已提交
6

7
   http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

9 10 11 12 13
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */
C
chengduoZH 已提交
14

C
chengduoZH 已提交
15
#include "paddle/operators/conv_op.h"
C
chengduoZH 已提交
16 17 18 19

namespace paddle {
namespace operators {

C
chengduoZH 已提交
20
void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
21
  PADDLE_ENFORCE(ctx->HasInput("Input"),
C
chengduoZH 已提交
22
                 "Input(Input) of ConvOp should not be null.");
C
chengduoZH 已提交
23
  PADDLE_ENFORCE(ctx->HasInput("Filter"),
C
chengduoZH 已提交
24
                 "Input(Filter) of ConvOp should not be null.");
C
chengduoZH 已提交
25
  PADDLE_ENFORCE(ctx->HasOutput("Output"),
C
chengduoZH 已提交
26
                 "Output(Output) of ConvOp should not be null.");
C
chengduoZH 已提交
27 28 29 30 31 32

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
33
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
C
chengduoZH 已提交
34 35 36
  int input_channels = in_dims[1];
  int output_channels = filter_dims[0];

C
chengduoZH 已提交
37 38
  PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5,
                 "Conv intput should be 4-D or 5-D tensor.");
C
chengduoZH 已提交
39 40 41 42 43 44 45 46 47
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
      "Conv input dimension and filter dimension should be the same.");
  PADDLE_ENFORCE(
      in_dims.size() - strides.size() == 2U,
      "Conv input dimension and strides dimension should be consistent.");
  PADDLE_ENFORCE_EQ(
      paddings.size(), strides.size(),
      "Conv paddings dimension and Conv strides dimension should be the same.");
C
chengduoZH 已提交
48 49
  PADDLE_ENFORCE_EQ(input_channels, filter_dims[1] * groups,
                    "The number of input channels should be equal to filter "
C
chengduoZH 已提交
50
                    "channels * groups.");
C
chengduoZH 已提交
51 52 53 54 55
  PADDLE_ENFORCE_EQ(
      output_channels % groups, 0,
      "The number of output channels should be divided by groups.");

  std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
C
chengduoZH 已提交
56
  for (size_t i = 0; i < strides.size(); ++i) {
C
chengduoZH 已提交
57 58 59 60 61 62
    PADDLE_ENFORCE(in_dims[i + 2] + 2 * paddings[i] -
                           (dilations[i] * (filter_dims[i + 2] - 1) + 1) >
                       0,
                   "Due to the settings of paddings, filter_dims and "
                   "dilations, the output size is less than 0, please check "
                   "again.");
C
chengduoZH 已提交
63
    output_shape.push_back(OutputSize(in_dims[i + 2], filter_dims[i + 2],
C
chengduoZH 已提交
64
                                      dilations[i], paddings[i], strides[i]));
C
chengduoZH 已提交
65
  }
66
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
C
chengduoZH 已提交
67 68
}

C
chengduoZH 已提交
69 70 71 72 73
Conv2DOpMaker::Conv2DOpMaker(framework::OpProto* proto,
                             framework::OpAttrChecker* op_checker)
    : OpProtoAndCheckerMaker(proto, op_checker) {
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
74 75 76 77
      "(Tensor) The input tensor of convolution operator. "
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
78
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
79
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
80 81
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
82 83
           "H is the height of the filter, and W is the width of the filter. "
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
84 85
           "input image channels divided by the groups.");
  AddOutput("Output",
C
fix doc  
chengduoZH 已提交
86 87
            "(Tensor) The output tensor of convolution operator. "
            "The format of output tensor is also NCHW.");
C
chengduoZH 已提交
88 89 90 91
  AddAttr<std::vector<int>>("strides",
                            "(vector<int> default:{1, 1}), the "
                            "strides(h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
92
      .SetDefault({1, 1});
C
chengduoZH 已提交
93 94 95 96
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int> default:{0, 0}), the "
                            "paddings(h_pad, w_pad) of "
                            "convolution operator.")
C
chengduoZH 已提交
97 98 99
      .SetDefault({0, 0});
  AddAttr<int>(
      "groups",
C
fix doc  
chengduoZH 已提交
100 101 102 103 104
      "(int default:1), the group size of convolution operator. "
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
105
      .SetDefault(1);
C
chengduoZH 已提交
106
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
107 108
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of "
C
chengduoZH 已提交
109
                            "convolution operator.")
C
chengduoZH 已提交
110
      .SetDefault({1, 1});
C
chengduoZH 已提交
111
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
112 113
Convolution Operator.

C
chengduoZH 已提交
114
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
115
and strides, paddings, groups, dilations parameters. The size of each dimension of the
C
chengduoZH 已提交
116
parameters is checked in the infer-shape.
C
chengduoZH 已提交
117
Input(Input, Filter) and output(Output) are in NCHW format. Where N is batch
C
fix doc  
chengduoZH 已提交
118
size, C is the number of channels, H is the height of the feature, and W is
C
chengduoZH 已提交
119
the width of the feature. Parameters(ksize, strides, paddings, dilations) are two elements.
C
chengduoZH 已提交
120 121 122 123 124 125 126 127 128 129
These two elements represent height and width, respectively.
The input(X) size and output(Out) size may be different.

Example:
  Input:
       Input shape: (N, C_in, H_in, W_in)
       Filter shape: (C_out, C_in, H_f, W_f)
  Output:
       Output shape: (N, C_out, H_out, W_out)
  where
C
chengduoZH 已提交
130 131
       H_out = (H_in + 2 * paddings[0] - (dilations[0]*(filter_size[0] - 1) + 1)) / strides[0] + 1;
       W_out = (W_in + 2 * paddings[1] - (dilations[1]*(filter_size[1] - 1) + 1)) / strides[1] + 1;
C
chengduoZH 已提交
132
)DOC");
C
chengduoZH 已提交
133 134 135 136 137 138 139
}

Conv3DOpMaker::Conv3DOpMaker(framework::OpProto* proto,
                             framework::OpAttrChecker* op_checker)
    : OpProtoAndCheckerMaker(proto, op_checker) {
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
140
      "(Tensor) The input tensor of convolution operator. "
C
chengduoZH 已提交
141
      "The format of input tensor is NCDHW. Where N is batch size, C is the "
C
fix doc  
chengduoZH 已提交
142 143 144
      "number of channels, D is the depth of the feature, H is the height of "
      "the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
145
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
146
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
147 148
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
149 150 151
           "D is the depth of the filter, H is the height of the filter, and W "
           "is the width of the filter."
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
152 153
           "input image channels divided by the groups.");
  AddOutput("Output",
C
fix doc  
chengduoZH 已提交
154
            "(Tensor) The output tensor of convolution operator."
C
chengduoZH 已提交
155
            "The format of output tensor is also NCDHW.");
C
chengduoZH 已提交
156 157 158 159
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default:{1, 1, 1}), the "
                            "strides(d_stride, h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
160
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
161 162 163 164
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int>, default:{0, 0, 0}), the "
                            "paddings(d_pad, h_pad, w_pad) of convolution "
                            "operator.")
C
chengduoZH 已提交
165 166 167
      .SetDefault({0, 0, 0});
  AddAttr<int>(
      "groups",
C
fix doc  
chengduoZH 已提交
168 169 170 171 172
      "(int default:1), the group size of convolution operator. "
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
173
      .SetDefault(1);
C
chengduoZH 已提交
174
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
175 176
                            "(vector<int> default:{1, 1, 1}), the "
                            "dilations(d_dilation, h_dilation, w_dilation) of "
C
chengduoZH 已提交
177 178
                            "convolution operator. Currently, conv3d doesn't "
                            "support dilation.")
C
chengduoZH 已提交
179
      .SetDefault({1, 1, 1});
C
fix doc  
chengduoZH 已提交
180

C
chengduoZH 已提交
181
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
182 183
Convolution3D Operator.

C
chengduoZH 已提交
184 185 186
The convolution operation calculates the output based on the input, filter
and strides, paddings, groups parameters. The size of each dimension of the
parameters is checked in the infer-shape.
C
fix doc  
chengduoZH 已提交
187
Input(Input, Filter) and output(Output) are in NCDHW format. Where N is batch
C
fix doc  
chengduoZH 已提交
188 189 190
size, C is the number of channels,D is the depth of the feature, H is the height of
the feature, and W is the width of the feature. Parameters(ksize, strides, paddings)
are three elements. These three elements represent depth, height and width, respectively.
C
fix doc  
chengduoZH 已提交
191 192 193 194 195 196 197 198 199 200 201 202
The input(X) size and output(Out) size may be different.

Example:
  Input:
       Input shape: (N, C_in, D_in, H_in, W_in)
       Filter shape: (C_out, C_in, D_f, H_f, W_f)
  Output:
       Output shape: (N, C_out, D_out, H_out, W_out)
  where
       D_out = (D_in - filter_size[0] + 2 * paddings[0]) / strides[0] + 1;
       H_out = (H_in - filter_size[1] + 2 * paddings[1]) / strides[1] + 1;
       W_out = (W_in - filter_size[2] + 2 * paddings[2]) / strides[2] + 1;
C
chengduoZH 已提交
203 204 205
)DOC");
}

C
chengduoZH 已提交
206 207 208 209 210 211 212 213 214 215 216
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

C
chengduoZH 已提交
217 218 219 220
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
C
chengduoZH 已提交
221 222 223 224 225 226
REGISTER_OP(conv2d, ops::ConvOp, ops::Conv2DOpMaker, conv2d_grad,
            ops::ConvOpGrad);
namespace ops = paddle::operators;
REGISTER_OP(conv3d, ops::ConvOp, ops::Conv3DOpMaker, conv3d_grad,
            ops::ConvOpGrad);

C
chengduoZH 已提交
227
REGISTER_OP_CPU_KERNEL(conv2d,
C
chengduoZH 已提交
228 229
                       ops::GemmConvKernel<paddle::platform::CPUPlace, float>,
                       ops::GemmConvKernel<paddle::platform::CPUPlace, double>);
C
chengduoZH 已提交
230
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
231 232
    conv2d_grad, ops::GemmConvGradKernel<paddle::platform::CPUPlace, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUPlace, double>);
C
chengduoZH 已提交
233

C
chengduoZH 已提交
234
REGISTER_OP_CPU_KERNEL(conv3d,
C
chengduoZH 已提交
235 236
                       ops::GemmConvKernel<paddle::platform::CPUPlace, float>,
                       ops::GemmConvKernel<paddle::platform::CPUPlace, double>);
C
chengduoZH 已提交
237
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
238 239
    conv3d_grad, ops::GemmConvGradKernel<paddle::platform::CPUPlace, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUPlace, double>);