parameter_server_optimizer.py 11.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

from paddle import fluid
from .meta_optimizer_base import MetaOptimizerBase
16 17 18 19
from paddle.fluid import core
import subprocess
import re
import platform
20 21


22
class ParameterServerOptimizer(MetaOptimizerBase):
23
    def __init__(self, optimizer):
24
        super(ParameterServerOptimizer, self).__init__(optimizer)
25 26 27 28 29 30 31 32 33 34
        self.inner_opt = optimizer
        # we do not allow meta optimizer to be inner optimizer currently
        self.meta_optimizers_white_list = []

    def _is_graph_out(self):
        return False

    def _can_apply(self):
        if self.role_maker._is_collective:
            return False
35

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
        k_steps = self.user_defined_strategy.a_sync_configs["k_steps"]
        return True if k_steps >= 0 else False

    def _get_distributed_strategy(self):
        from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import StrategyFactory

        k_steps = self.user_defined_strategy.a_sync_configs["k_steps"]
        strategy = None

        if not self.user_defined_strategy.a_sync and k_steps == 0:
            strategy = StrategyFactory.create_sync_strategy()

        if self.user_defined_strategy.a_sync and k_steps == 0:
            strategy = StrategyFactory.create_async_strategy()

        if self.user_defined_strategy.a_sync and k_steps > 0:
            strategy = StrategyFactory.create_geo_strategy(k_steps)

        if not strategy:
            raise ValueError("k_steps must be invalid value, please check")

        return strategy

    def _build_trainer_programs(self, compiled_config):
        from paddle.fluid.incubate.fleet.parameter_server.ir import trainer_pass as worker

        _main = compiled_config.origin_main_program.clone()
        _startup = compiled_config.origin_startup_program.clone()

        if not compiled_config.is_geo_mode():
            # for main program
            _main = worker.delete_optimizer_pass(_main, compiled_config)
            _main = worker.distributed_ops_pass(_main, compiled_config)
            _main = worker.append_send_ops_pass(_main, compiled_config)

            # for startup program
            _startup = worker.fake_init_ops_pass(_startup, compiled_config)
            _startup = worker.init_from_server_pass(_startup, compiled_config)
            _startup = worker.delet_extra_optimizes_pass(_startup,
                                                         compiled_config)
76

77 78
            compiled_config.set_origin_ps_main_program(_main)
            compiled_config.set_origin_ps_startup_program(_startup)
79 80 81 82 83 84 85 86 87 88 89 90 91 92
            # for heter program
            if self.role_maker._is_heter_parameter_server_mode:
                from paddle.fluid.incubate.fleet.parameter_server.ir import heter_trainer_pass as heter_worker
                if self.role_maker._is_heter_worker():
                    # for heter worker
                    _main = heter_worker.split_heter_worker_ops_pass(
                        _main, compiled_config)
                else:
                    # for default worker
                    _main = heter_worker.split_trainer_ops_pass(_main,
                                                                compiled_config)
                # for startup change
                _startup = heter_worker.delete_startup_useless_ops_var_pass(
                    _startup, _main, compiled_config)
93 94 95
        else:
            _main = worker.append_send_ops_pass(_main, compiled_config)
            _startup = _startup
96 97
            compiled_config.set_origin_ps_main_program(_main)
            compiled_config.set_origin_ps_startup_program(_startup)
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138

        return _main, _startup

    def _build_pserver_programs(self, compiled_config):
        from paddle.fluid.incubate.fleet.parameter_server.ir import pserver_pass as server

        _main = fluid.Program()
        _startup = fluid.Program()

        if not compiled_config.is_geo_mode():
            _main = server.add_listen_and_serv_pass(_main, compiled_config)
            _main = server.add_rpc_global_flags_pass(_main, compiled_config)
            _main = server.add_optimizer_pass(_main, compiled_config)
            _main = server.large_scale_sparse_pass(_main, _main,
                                                   compiled_config, False)
            _startup = server.build_pserver_startup_program_pass(
                _startup, _main, compiled_config)
            _startup = server.large_scale_sparse_pass(_startup, _main,
                                                      compiled_config, True)

            if not compiled_config.is_sync_mode():
                _main = server.delete_unused_in_main_pass(_main,
                                                          compiled_config)

            _startup = server.delete_unused_in_startup_pass(_startup, _main,
                                                            compiled_config)
        else:
            _main = server.add_listen_and_serv_pass(_main, compiled_config)
            _main = server.add_rpc_global_flags_pass(_main, compiled_config)
            _main = server.add_geo_optimizer_pass(_main, compiled_config)
            _main = server.large_scale_sparse_pass(_main, _main,
                                                   compiled_config, False)
            _startup = server.build_pserver_startup_program_pass(
                _startup, _main, compiled_config)
            _startup = server.large_scale_sparse_pass(_startup, _main,
                                                      compiled_config, True)
            _startup = server.delete_unused_in_startup_pass(_startup, _main,
                                                            compiled_config)

        return _main, _startup

139
    def _can_apply_geo(self, dist_strategy, program):
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
        def get_sys_free_mem():
            plat = platform.system()
            if platform.system() == "Darwin":
                vm = subprocess.Popen(
                    ['vm_stat'], stdout=subprocess.PIPE).communicate()[0]
                # Process vm_stat
                vmLines = vm.split('\n')
                sep = re.compile(':[\s]+')
                vmStats = {}
                for row in range(1, len(vmLines) - 2):
                    rowText = vmLines[row].strip()
                    rowElements = sep.split(rowText)
                    vmStats[(rowElements[0]
                             )] = int(rowElements[1].strip('\.')) * 4096
                return vmStats["Pages free"]
            elif platform.system() == "Linux":
                mems = {}
                with open('/proc/meminfo', 'rb') as f:
                    for line in f:
                        fields = line.split()
                        mems[fields[0]] = int(fields[1]) * 1024
                free = mems[b'MemFree:']
                return free
            else:
                raise ValueError(
                    "%s platform is unsupported is parameter server optimizer" %
                    (platform.system()))

        if not isinstance(self.inner_opt, fluid.optimizer.SGDOptimizer):
169
            return False
170 171 172

        free = get_sys_free_mem()

173
        from paddle.fluid.incubate.fleet.parameter_server.ir import vars_metatools
174

175
        processed_var_names = set(["@EMPTY@"])
176
        param_memory_size = 0
177 178 179 180 181 182
        for varname in program.global_block().vars:
            var = program.global_block().vars[varname]
            if not var.persistable or var.desc.type(
            ) != core.VarDesc.VarType.LOD_TENSOR:
                continue
            param = vars_metatools.create_var_struct(var)
183
            param_memory_size += param.m_size
184
            processed_var_names.add(varname)
185 186 187 188

        upper_mem_use = param_memory_size * 5.0

        program_tmp_vars = dict()
189
        eval_batch_size = 1024
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
        for op in program.global_block().ops:
            for var_name in op.output_arg_names:
                if var_name in processed_var_names:
                    continue
                processed_var_names.add(var_name)
                var = program.global_block().vars[var_name]

                if var.desc.type() != core.VarDesc.VarType.LOD_TENSOR:
                    continue

                data_count = 1
                neg_dim_count = 0
                for x in var.shape:
                    if x < 0:
                        if neg_dim_count >= 1:
                            raise ValueError(
                                "Var %s has more than one negative dim." %
                                (var_name))
                        neg_dim_count += 1
                        data_count *= (-x)
                    else:
                        data_count *= x
212 213 214
                program_tmp_vars[var_name] = (
                    data_count, neg_dim_count,
                    vars_metatools.dtype_to_size[var.dtype])
215 216 217 218

        for varname in program_tmp_vars:
            data_count, neg_dim_count, type_size = program_tmp_vars[varname]
            if neg_dim_count == 1:
219
                data_count *= eval_batch_size
220 221 222 223
            var_memory = data_count * type_size
            upper_mem_use += var_memory

        if upper_mem_use < free:
224
            return True
225
        else:
226
            return False
227

228 229 230 231 232 233 234
    def minimize_impl(self,
                      loss,
                      startup_program=None,
                      parameter_list=None,
                      no_grad_set=None):
        self.inner_opt.minimize(loss, startup_program, parameter_list,
                                no_grad_set)
235
        strategy = self._get_distributed_strategy()
236 237 238 239 240 241 242

        _origin_main_program = loss.block.program
        _origin_startup_program = startup_program
        from paddle.fluid.incubate.fleet.parameter_server.ir import public as public

        compiled_config = public.CompileTimeStrategy(_origin_main_program,
                                                     _origin_startup_program,
243
                                                     strategy, self.role_maker)
244
        compiled_config.strategy = strategy
245

246
        if self.role_maker._is_worker() or self.role_maker._is_heter_worker():
247 248
            main_program, startup_program = self._build_trainer_programs(
                compiled_config)
249
        elif self.role_maker._is_server():
250 251
            main_program, startup_program = self._build_pserver_programs(
                compiled_config)
252 253 254 255 256 257 258

        loss.block.program = main_program
        fluid.framework.switch_startup_program(startup_program)

        return None, None

    def _disable_strategy(self, dist_strategy):
259 260 261 262 263 264 265 266 267
        dist_strategy.a_sync = False
        a_sync_configs = dist_strategy.a_sync_configs
        a_sync_configs["k_steps"] = -1
        dist_strategy.a_sync_configs = a_sync_configs

    def _enable_strategy(self, dist_strategy, context):
        a_sync_configs = dist_strategy.a_sync_configs
        if a_sync_configs["k_steps"] >= 0:
            return
268 269

        dist_strategy.a_sync = True
270 271 272 273 274 275 276 277 278 279
        a_sync_configs = dist_strategy.a_sync_configs

        is_geo = self._can_apply_geo(dist_strategy,
                                     context["origin_main_program"])

        if is_geo:
            a_sync_configs["k_steps"] = 800
        else:
            a_sync_configs["k_steps"] = 0
        dist_strategy.a_sync_configs = a_sync_configs