nets.py 3.9 KB
Newer Older
1
import layers
F
fengjiayi 已提交
2

D
dzhwinter 已提交
3 4
__all__ = ["simple_img_conv_pool", "sequence_conv_pool"]

F
fengjiayi 已提交
5 6 7

def simple_img_conv_pool(input,
                         num_filters,
D
dzhwinter 已提交
8
                         filter_size,
F
fengjiayi 已提交
9 10 11
                         pool_size,
                         pool_stride,
                         act,
F
fengjiayi 已提交
12
                         param_attr=None,
Q
Qiao Longfei 已提交
13
                         pool_type='max',
14 15
                         main_program=None,
                         startup_program=None):
F
fengjiayi 已提交
16 17 18 19
    conv_out = layers.conv2d(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
F
fengjiayi 已提交
20
        param_attr=param_attr,
F
fengjiayi 已提交
21
        act=act,
22 23
        main_program=main_program,
        startup_program=startup_program)
F
fengjiayi 已提交
24 25 26 27

    pool_out = layers.pool2d(
        input=conv_out,
        pool_size=pool_size,
Q
Qiao Longfei 已提交
28 29
        pool_type=pool_type,
        pool_stride=pool_stride,
30 31
        main_program=main_program,
        startup_program=startup_program)
Q
Qiao Longfei 已提交
32 33 34 35 36 37 38 39 40
    return pool_out


def img_conv_group(input,
                   conv_num_filter,
                   pool_size,
                   conv_padding=1,
                   conv_filter_size=3,
                   conv_act=None,
F
fengjiayi 已提交
41
                   param_attr=None,
Q
Qiao Longfei 已提交
42 43 44 45
                   conv_with_batchnorm=False,
                   conv_batchnorm_drop_rate=None,
                   pool_stride=1,
                   pool_type=None,
46 47
                   main_program=None,
                   startup_program=None):
Q
Qiao Longfei 已提交
48 49 50 51 52
    """
    Image Convolution Group, Used for vgg net.
    """
    tmp = input
    assert isinstance(conv_num_filter, list) or \
53
        isinstance(conv_num_filter, tuple)
Q
Qiao Longfei 已提交
54 55 56 57 58 59 60 61 62

    def __extend_list__(obj):
        if not hasattr(obj, '__len__'):
            return [obj] * len(conv_num_filter)
        else:
            return obj

    conv_padding = __extend_list__(conv_padding)
    conv_filter_size = __extend_list__(conv_filter_size)
F
fengjiayi 已提交
63
    param_attr = __extend_list__(param_attr)
Q
Qiao Longfei 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76
    conv_with_batchnorm = __extend_list__(conv_with_batchnorm)
    conv_batchnorm_drop_rate = __extend_list__(conv_batchnorm_drop_rate)

    for i in xrange(len(conv_num_filter)):
        local_conv_act = conv_act
        if conv_with_batchnorm[i]:
            local_conv_act = None

        tmp = layers.conv2d(
            input=tmp,
            num_filters=conv_num_filter[i],
            filter_size=conv_filter_size[i],
            padding=conv_padding[i],
F
fengjiayi 已提交
77
            param_attr=param_attr[i],
Q
Qiao Longfei 已提交
78
            act=local_conv_act,
79 80
            main_program=main_program,
            startup_program=startup_program)
Q
Qiao Longfei 已提交
81 82 83 84 85

        if conv_with_batchnorm[i]:
            tmp = layers.batch_norm(
                input=tmp,
                act=conv_act,
86 87
                main_program=main_program,
                startup_program=startup_program)
Q
Qiao Longfei 已提交
88 89 90 91 92
            drop_rate = conv_batchnorm_drop_rate[i]
            if abs(drop_rate) > 1e-5:
                tmp = layers.dropout(
                    x=tmp,
                    dropout_prob=drop_rate,
93 94
                    main_program=main_program,
                    startup_program=startup_program)
Q
Qiao Longfei 已提交
95 96 97 98 99

    pool_out = layers.pool2d(
        input=tmp,
        pool_size=pool_size,
        pool_type=pool_type,
F
fengjiayi 已提交
100
        pool_stride=pool_stride,
101 102
        main_program=main_program,
        startup_program=startup_program)
F
fengjiayi 已提交
103
    return pool_out
D
dzhwinter 已提交
104 105 106 107 108


def sequence_conv_pool(input,
                       num_filters,
                       filter_size,
F
fengjiayi 已提交
109
                       param_attr=None,
110
                       act="sigmoid",
D
dzhwinter 已提交
111
                       pool_type="max",
112 113
                       main_program=None,
                       startup_program=None):
D
dzhwinter 已提交
114 115 116 117
    conv_out = layers.sequence_conv(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
F
fengjiayi 已提交
118
        param_attr=param_attr,
119
        act=act,
120 121
        main_program=main_program,
        startup_program=startup_program)
D
dzhwinter 已提交
122 123 124

    pool_out = layers.sequence_pool(
        input=conv_out,
D
dzhwinter 已提交
125
        pool_type=pool_type,
126 127
        main_program=main_program,
        startup_program=startup_program)
D
dzhwinter 已提交
128
    return pool_out