memory_optimize_pass.h 3.6 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <algorithm>
#include <list>
#include <map>
#include <memory>
#include <set>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>

#include "paddle/fluid/framework/data_type.h"
D
dzhwinter 已提交
28
#include "paddle/fluid/framework/details/memory_optimize_helper.h"
D
dzhwinter 已提交
29 30 31 32 33 34 35 36 37 38 39 40
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/pass.h"

namespace paddle {
namespace framework {
namespace details {
constexpr char kAllOpDescs[] = "all_op_descs";

std::vector<ir::Node*> SortOpLikeDescOrder(const ir::Graph& graph);

class ControlFlowGraph;

D
dzhwinter 已提交
41
class MemoryOptimizePass : public ir::Pass {
D
dzhwinter 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
 protected:
  std::unique_ptr<ir::Graph> ApplyImpl(
      std::unique_ptr<ir::Graph> graph) const override;

 private:
  // fill the variable map(var_nodes) by version.
  void InitSSAGraphNodes() const;
  // update program descs
  void RenameVarInGraphDesc(const std::string& var,
                            const std::string& cache_var, size_t idx) const;
  // update ir nodes
  void RenameVarInGraphNode(const std::string& var,
                            const std::string& cache_var, size_t idx,
                            ir::Graph* graph) const;

  void SubGraphOptimize(OpDesc* op_desc) const;
  // scan subblock and collect the output/input variables.
  std::unordered_set<std::string> GetSubBlockVars(
      const std::unordered_set<ir::Node*>&) const;

 private:
  // Reuse Node Pool, Owned.
D
dzhwinter 已提交
64
  mutable OrderedNodeList pool_;
D
dzhwinter 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
  // controlflow Graph
  mutable std::unique_ptr<ControlFlowGraph> cfg_;
  // skip set
  mutable std::unordered_set<std::string> skip_set_;
  // var nodes
  mutable std::map<std::string, std::vector<ir::Node*>> var_nodes_;
};

class ControlFlowGraph {
 public:
  ControlFlowGraph() = default;
  // For IR Graph in parallelexecutor
  explicit ControlFlowGraph(const ir::Graph& graph);

  void LiveVariableAnalysis();

  void RenameVarInCFGGraph(const std::string& old_node,
                           const std::string& new_node, int begin_idx);

  const std::set<std::string> LiveIn(ir::Node* op) const;
  const std::set<std::string> LiveOut(ir::Node* op) const;
  const std::set<std::string> Use(ir::Node* op) const;
  const std::vector<ir::Node*> Ops() const;
  std::vector<ir::Node*>& Ops();

  // for ssa-graph nodes
  ir::Node* GetNodeFromVarName(const std::string& name, ir::Node* op) const;

 private:
  void BuildCFGGraph();
  void ConnectNodes();
  using NodeListMap = std::unordered_map<ir::Node*, std::set<ir::Node*>>;
  using VarSetMap = std::map<ir::Node*, std::set<std::string>>;
  // successors ops use the output variables.
  NodeListMap successors_;
  // predecessors ops generated input variables.
  NodeListMap predecessors_;
  // variables lived before run current op.
  VarSetMap live_in_;
  // variables lived after run current op.
  VarSetMap live_out_;
  VarSetMap uses_;  // op inputs
  VarSetMap defs_;  // op outputs

  std::vector<ir::Node*> ops_;  // op sequence by topology sort
};

}  // namespace details
}  // namespace framework
}  // namespace paddle