basic_engine.cc 22.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/basic_engine.h"

#include <algorithm>
#include <memory>
#include <queue>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
26

27 28 29 30 31 32 33
#include "paddle/fluid/imperative/gradient_accumulator.h"
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/imperative/op_base.h"
#include "paddle/fluid/imperative/tracer.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/profiler.h"

34 35
DECLARE_bool(sort_sum_gradient);

36 37 38
namespace paddle {
namespace imperative {

39 40 41 42
void BasicEngine::Init(
    const std::vector<std::shared_ptr<VarBase>>& tensors,
    const std::vector<std::shared_ptr<VarBase>>& grad_tensors,
    bool retain_graph) {
43
  retain_graph_ = retain_graph;
44

45 46 47 48 49 50 51
  PADDLE_ENFORCE_EQ(
      tensors.size(), grad_tensors.size(),
      platform::errors::Unavailable(
          "The size of tensors do not equal the size of grad_tensors,"
          "the size of tensors is %s, but the size of grad_tensors is %s.",
          tensors.size(), grad_tensors.size()));

C
chentianyu03 已提交
52 53 54 55
  PADDLE_ENFORCE_EQ(accumulators_.empty(), true,
                    platform::errors::AlreadyExists(
                        "Accumulators are not empty before preparing it for "
                        "backward network execution."));
56 57 58 59
  PADDLE_ENFORCE_EQ(accumulators_with_grad_node_.empty(), true,
                    platform::errors::AlreadyExists(
                        "Accumulators with grad_node as the key are not empty "
                        "before preparing it for backward network execution."));
C
chentianyu03 已提交
60

61 62 63 64 65
  for (size_t i = 0; i < tensors.size(); ++i) {
    auto var = tensors[i];
    auto grad_tensor = grad_tensors[i];

    auto init_node = var->GradVarBase()->GradNode();
C
chentianyu03 已提交
66

67 68 69 70 71 72 73 74 75 76 77 78 79 80
    PADDLE_ENFORCE_EQ(
        var->GradVarBase()->GraphIsFreed(), false,
        platform::errors::Unavailable(
            "%s trying to backward through the same graph a second "
            "time, but this graph have already been freed. Please "
            "specify Tensor.backward(retain_graph=True) when "
            "calling backward at the first time.",
            var->Name()));

    if (!retain_graph) {
      VLOG(5) << "Clear the auto-grad graph from grad var " << var->Name()
              << " because of retain_graph=False when calling backward";
      var->GradVarBase()->SetGraphIsFreed(true);
    }
81

82 83 84 85 86 87
    if (init_node == nullptr || var->OverridedStopGradient()) {
      VLOG(3) << "Skip auto grad since there is no grad op for var or loss is "
                 "stop_gradient=True: "
              << var->Name();
      continue;
    }
88

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
    VLOG(3) << "Init node of backward";

    PADDLE_ENFORCE_EQ(
        var->HasGradVar(), true,
        platform::errors::NotFound("Tensor %s has no gradient", var->Name()));

    auto& fwd_var = var->Var().Get<framework::LoDTensor>();
    auto* grad_var =
        var->GradVarBase()->MutableVar()->GetMutable<framework::LoDTensor>();
    VLOG(6) << "init loss grad:" << var->GradVarBase()->Name()
            << " as stop_gradient false";
    var->GradVarBase()->InnerSetOverridedStopGradient(false);
    auto* dev_ctx =
        platform::DeviceContextPool::Instance().Get(fwd_var.place());
    if (grad_tensor == nullptr) {
      grad_var->Resize(fwd_var.dims());
      grad_var->mutable_data(fwd_var.place(), fwd_var.type());
      operators::math::set_constant(*dev_ctx, grad_var, 1.0);
    } else {
      paddle::framework::TensorCopy(
          grad_tensor->Var().Get<framework::LoDTensor>(), fwd_var.place(),
          *dev_ctx, grad_var);
    }

C
chentianyu03 已提交
113
    VariableWrapper* init_grad_var = var->GradVarBase()->SharedVar().get();
114 115 116
    auto& accumulator =
        accumulators_with_grad_node_[init_grad_var->GetGradNode()]
                                    [init_grad_var];
C
chentianyu03 已提交
117 118 119 120 121 122 123
    if (!accumulator) {
      if (FLAGS_sort_sum_gradient) {
        accumulator.reset(new SortedGradientAccumulator(init_grad_var));
      } else {
        accumulator.reset(new EagerGradientAccumulator(init_grad_var));
      }
    }
124 125
    accumulator->IncreaseRefCnt();
    accumulator->IncreaseCurCnt();
C
chentianyu03 已提交
126

127 128
    init_nodes_.push_back(init_node);
  }
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
}

void BasicEngine::CheckBackwardInputs(const OpBase& op) {
  for (auto& pair : op.GetInsMap()) {
    if (!pair.second.IsGrad()) {
      continue;
    }

    for (auto& var : pair.second) {
      if (!var) {
        continue;
      }

      auto* inner_var = var->MutableVar();
      framework::Tensor* tensor = nullptr;
      if (!inner_var->IsInitialized() ||
          inner_var->IsType<framework::LoDTensor>()) {
        tensor = inner_var->GetMutable<framework::LoDTensor>();
      }

      if (tensor && !tensor->IsInitialized()) {
        auto* dev_ctx = platform::DeviceContextPool::Instance().Get(op.place());
151 152 153 154 155 156 157 158
        // NOTE(zhiqiu): since grad variable is ungenerated, so the dtype is not
        // correct. var->DataType() returns the default dtype, which is float32.
        // Here, we use the type of the corresponding forward datatype.

        tensor->mutable_data(op.place(), var->ForwardDataType());
        VLOG(6) << "Set ungenerated Grad: " << var->Name()
                << " as zero with dtype "
                << framework::DataTypeToString(var->ForwardDataType());
159 160 161 162 163 164
        operators::math::set_constant(*dev_ctx, tensor, 0.0);
      }
    }
  }
}

165 166 167
void BasicEngine::PrepareGradAccumulators(
    const OpBase& op,
    const std::vector<std::shared_ptr<GradOpNode>>& grad_pending_nodes) {
168 169 170 171 172 173 174 175
  for (const auto& pair : op.GetOutsMap()) {
    if (!pair.second.IsGrad()) {
      continue;
    }

    for (const auto& var : pair.second) {
      if (!var) continue;

176 177 178 179 180 181 182 183
      if (!var->HasGradNode()) {
        auto& accumulator = accumulators_[var.get()];
        if (!accumulator) {
          if (FLAGS_sort_sum_gradient) {
            accumulator.reset(new SortedGradientAccumulator(var.get()));
          } else {
            accumulator.reset(new EagerGradientAccumulator(var.get()));
          }
184 185
        }

186
        accumulator->IncreaseRefCnt();
187

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
        VLOG(3) << "Prepare to acccumulate variable grad " << var->Name() << "("
                << var.get()
                << ") that don't have grad node  with reference count "
                << accumulator->RefCnt();
      } else {
        // Because Inplace op overwrites the grad_node of the input grad_var. So
        // only the information of grad_pending_node can be used to find the
        // grad_node of grad_var.
        bool find_grad_node_of_var = false;
        for (auto& grad_pending_node : grad_pending_nodes) {
          PADDLE_ENFORCE_NOT_NULL(
              grad_pending_node,
              platform::errors::NotFound("Grad pending node is nullptr."));
          for (auto& grad_pending_op : *grad_pending_node) {
            VLOG(6) << "Determine whether var (" << var->Name()
                    << ") is the input var of grad_pending_op ("
                    << grad_pending_op.Type() << ").";
            grad_pending_op.EnforceHasInOut();
            for (const auto& grad_pending_op_ins_pair :
                 grad_pending_op.GetInsMap()) {
              if (!grad_pending_op_ins_pair.second.IsGrad()) {
                continue;
              }
              for (const auto& pending_in_var :
                   grad_pending_op_ins_pair.second) {
                if (var == pending_in_var) {
                  VLOG(6) << "Var (" << var->Name()
                          << ") is the input var of grad_pending_op ("
                          << grad_pending_op.Type() << ").";
                  find_grad_node_of_var = true;
                  break;
                }
              }
              if (find_grad_node_of_var) {
                break;
              }
            }
          }
226

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
          if (find_grad_node_of_var) {
            auto& accumulator =
                accumulators_with_grad_node_[grad_pending_node][var.get()];

            if (!accumulator) {
              if (FLAGS_sort_sum_gradient) {
                accumulator.reset(new SortedGradientAccumulator(var.get()));
              } else {
                accumulator.reset(new EagerGradientAccumulator(var.get()));
              }
            }

            accumulator->IncreaseRefCnt();

            VLOG(3) << "Prepare to acccumulate variable grad " << var->Name()
                    << "(" << var.get()
                    << ") that has grad node with reference count "
                    << accumulator->RefCnt();
            break;
          }
        }
        PADDLE_ENFORCE_EQ(
            find_grad_node_of_var, true,
            platform::errors::NotFound(
                "No grad node corresponding to grad Tensor (%s) was found.",
                var->Name()));
253
      }
254 255 256 257 258 259 260
    }
  }
}

void BasicEngine::PrepareDeps() {
  PADDLE_ENFORCE_EQ(
      node_deps_.empty(), true,
261 262
      platform::errors::AlreadyExists("Op deps are not empty before preparing "
                                      "it for backward network execution."));
263 264 265 266

  std::queue<GradOpNode*> q;
  std::unordered_set<GradOpNode*> visited;

267 268 269 270
  for (size_t i = 0; i < init_nodes_.size(); ++i) {
    q.push(init_nodes_[i].get());
    visited.insert(init_nodes_[i].get());
  }
271 272 273 274 275

  while (!q.empty()) {
    auto* cur_node = q.front();
    q.pop();

276 277
    const auto& grad_pending_nodes = cur_node->GradPendingNodes();

278
    for (auto& cur_op : *cur_node) {
Z
Zeng Jinle 已提交
279
      cur_op.EnforceHasInOut();
280
      PrepareGradAccumulators(cur_op, grad_pending_nodes);
281 282 283 284 285
    }

    for (auto& grad_pending_node : grad_pending_nodes) {
      PADDLE_ENFORCE_NOT_NULL(
          grad_pending_node,
286
          platform::errors::NotFound("Grad pending node is nullptr."));
287 288 289 290 291 292 293 294 295
      ++node_deps_[grad_pending_node.get()];
      if (visited.count(grad_pending_node.get()) == 0) {
        visited.insert(grad_pending_node.get());
        q.push(grad_pending_node.get());
      }
    }
  }
}

296 297 298 299 300 301
static std::shared_ptr<NameVarMap<VariableWrapper>> CallGradientHooks(
    const NameVarMap<VariableWrapper>& bwd_ins, const std::string& op_type) {
  std::shared_ptr<NameVarMap<VariableWrapper>> tmp_ins_ptr = nullptr;
  for (const auto& pair : bwd_ins) {
    for (size_t i = 0; i < pair.second.size(); ++i) {
      auto& var = pair.second[i];
302
      if (var->HasVariableWrapperHook()) {
303 304 305
        if (tmp_ins_ptr == nullptr) {
          tmp_ins_ptr = std::make_shared<NameVarMap<VariableWrapper>>(bwd_ins);
        }
306 307 308
        VLOG(3) << "Call " << var->GetVariableWrapperHooks().size()
                << " hooks of " << op_type << "'s input `" << pair.first
                << "`'s var `" << var->Name() << "`.";
309
        auto tmp_var = var;
310
        for (const auto& hook_pair : var->GetVariableWrapperHooks()) {
311 312 313 314 315 316 317 318 319
          tmp_var = (*hook_pair.second)(tmp_var);
        }
        (*tmp_ins_ptr)[pair.first][i] = tmp_var;
      }
    }
  }
  return tmp_ins_ptr;
}

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
static bool IsInputCanInplace(const std::shared_ptr<VariableWrapper>& var) {
  auto* inner_var = var->MutableVar();
  if (inner_var->IsInitialized() && inner_var->IsType<framework::LoDTensor>()) {
    auto tensor = inner_var->GetMutable<framework::LoDTensor>();
    if (tensor->IsInitialized()) {
      return true;
    }
  }
  return false;
}

static void PerformBackwardInplace(const std::string& op_type,
                                   const NameVarMap<VariableWrapper>& ins,
                                   NameVarMap<VariableWrapper>* outs) {
  auto& infer_inplace =
      paddle::framework::OpInfoMap::Instance().Get(op_type).infer_inplace_;

  if (infer_inplace) {
    auto in_to_outs = infer_inplace(true);
    for (auto& pair : in_to_outs) {
      framework::LoDTensor *in_tensor = nullptr, *out_tensor = nullptr;
      for (auto& p : ins) {
        if (p.first == pair.first) {
          // has at least one var
          if (p.second.size() > 0 && p.second[0]) {
            auto& in_var = p.second[0];
            VLOG(10) << p.first << " use_count: " << in_var.use_count();
            // the refcount of var to be inplaced should be 1
            if (in_var.use_count() == 1) {
              if (IsInputCanInplace(in_var)) {
                in_tensor =
                    in_var->MutableVar()->GetMutable<framework::LoDTensor>();
              }
            }
          }
        }
      }
      if (!in_tensor) {
        continue;
      }
      for (auto& p : *outs) {
        if (p.first == pair.second) {
          if (p.second.size() > 0 && p.second[0]) {
            auto& out_var = p.second[0];
            if (out_var->Type() == framework::proto::VarType::LOD_TENSOR) {
              out_tensor =
                  out_var->MutableVar()->GetMutable<framework::LoDTensor>();
            }
          }
        }
      }
      if (!out_tensor) {
        continue;
      }
      out_tensor->ShareBufferWith(*in_tensor);
      out_tensor->Resize(in_tensor->dims());
      VLOG(4) << "Inplace performed in op " << op_type << ": " << pair.second
              << " -> " << pair.first;
    }
  }
}

382
void BasicEngine::Execute() {
383
  if (init_nodes_.empty()) {
384 385 386 387 388 389
    return;
  }

  PrepareDeps();
  // Start execute Computation graph
  std::queue<std::shared_ptr<GradOpNode>> q;
390
  for (size_t i = 0; i < init_nodes_.size(); ++i) {
C
chentianyu03 已提交
391 392 393
    if (node_deps_[init_nodes_[i].get()] == 0) {
      q.push(std::move(init_nodes_[i]));
    }
394
  }
395 396 397 398 399 400 401

  size_t op_num = 0;

  while (!q.empty()) {
    auto shared_cur_node = std::move(q.front());
    q.pop();

402 403
    auto& inplace_grad_name_map = shared_cur_node->InplaceGradNameMap();

404
    for (auto& cur_op : *shared_cur_node) {
405 406
      platform::RecordEvent op_type_record_event(cur_op.Type());

407 408 409 410 411
      ++op_num;

      // CheckBackWardInput
      CheckBackwardInputs(cur_op);

412
      // Step 1: Run Backward OP
413 414 415
      auto& bwd_ins = cur_op.GetInsMap();
      auto& bwd_outs = cur_op.GetOutsMap();

416 417 418 419 420 421 422
      /**
       * [ Why need temporary outputs here? ]
       *
       * - construct the temp output map, avoid to disrupt graph
       * - replace the element in the map by temp var, because a
       *   var may be coresponding to several grad var in one op
       */
423
      NameVarMap<VariableWrapper> tmp_outs(bwd_outs);
424

425 426 427 428 429 430 431 432 433 434
      for (auto& pair : tmp_outs) {
        if (!pair.second.IsGrad()) {
          continue;
        }

        for (auto& var : pair.second) {
          if (!var) {
            continue;
          }

435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
          std::unordered_map<VariableWrapper*,
                             std::unique_ptr<GradientAccumulator>>::iterator
              iter;
          if (!var->HasGradNode()) {
            VLOG(10) << "Find gradient of var (" << var->Name()
                     << ") with no grad_node.";
            iter = accumulators_.find(var.get());
            PADDLE_ENFORCE_EQ(
                iter != accumulators_.end(), true,
                platform::errors::NotFound(
                    "Cannot find gradient of variable %s", var->Name()));
          } else {
            bool flag_find_grad = false;
            VLOG(10) << "Find gradient of var (" << var->Name()
                     << ") with grad_node.";
            for (auto& grad_pending_node :
                 shared_cur_node->GradPendingNodes()) {
              const auto& iter_grad_node =
                  accumulators_with_grad_node_.find(grad_pending_node);
              if (iter_grad_node != accumulators_with_grad_node_.end()) {
                iter = iter_grad_node->second.find(var.get());
                if (iter != iter_grad_node->second.end()) {
                  flag_find_grad = true;
                  break;
                }
              }
            }
            PADDLE_ENFORCE_EQ(
                flag_find_grad, true,
                platform::errors::NotFound(
                    "Cannot find gradient of variable %s", var->Name()));
          }
467

468 469
          // leaf_accumulators_ : hooks and accumulate-grad for leaf tensor,
          // it should be orderly and not reapeated.
470
          if (var->IsLeafGrad()) {
471 472 473 474
            if (std::find(leaf_accumulators_.begin(), leaf_accumulators_.end(),
                          iter->second.get()) == leaf_accumulators_.end()) {
              leaf_accumulators_.push_back(iter->second.get());
            }
475 476 477 478

            if (iter->second->HasInnerVar()) {
              var = iter->second->InnerVar();
            }
479 480
          }

481 482 483
          if (var->OverridedStopGradient() || iter->second->RefCnt() > 1) {
            auto tmp_var = std::make_shared<VariableWrapper>(var->Name());
            tmp_var->SetType(var->Type());
484
            tmp_var->SetForwardDataType(var->ForwardDataType());
485 486 487 488
            var = tmp_var;
            need_accu_var_list_.emplace_back(iter->second.get(), var);
            VLOG(10) << "create temporary var of " << var->Name()
                     << " for sum gradient within this graph!";
489
          } else if (!inplace_grad_name_map.empty() &&
490 491
                     inplace_grad_name_map.count(pair.first) &&
                     bwd_ins.count(inplace_grad_name_map.at(pair.first))) {
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
            // When calculate Inplace grad op, create a new output var.
            // If a tmp var has been created, there is no need to create it
            // again.
            for (auto& in_var :
                 bwd_ins.at(inplace_grad_name_map.at(pair.first))) {
              if (in_var == var) {
                auto tmp_var = std::make_shared<VariableWrapper>(var->Name());
                tmp_var->SetType(var->Type());
                tmp_var->SetForwardDataType(var->ForwardDataType());
                inplace_output_grad_var_list_.emplace_back(var, tmp_var);
                var = tmp_var;
                VLOG(10) << "Inplace grad op does not use the Inplace "
                            "strategy, a temporary output var ("
                         << var->Name() << ") will be created.";
                break;
              }
            }
509
          }
510 511 512
        }
      }

513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
      VLOG(4) << "Check whether there is any inplace operation affecting "
                 "gradient calculation.";
      for (auto& pair : bwd_ins) {
        for (auto& var_wrapper : pair.second) {
          auto wrapper_version_snapshot = var_wrapper->InplaceVersionSnapshot();
          auto tensor_version =
              var_wrapper->MutableVar()->CurrentInplaceVersion();
          PADDLE_ENFORCE_EQ(
              tensor_version, wrapper_version_snapshot,
              platform::errors::PermissionDenied(
                  "Tensor '%s' used in gradient computation in grad op '%s' "
                  "has been "
                  "modified by an inplace operation. "
                  "Its version is %s but the expected version is %s. "
                  "Please fix your code to void calling an inplace operator "
                  "after using the Tensor which will used in gradient "
                  "computation.",
                  var_wrapper->Name(), cur_op.Type(), tensor_version,
                  wrapper_version_snapshot));

          VLOG(6) << " The version of Tensor '" << var_wrapper->Name()
                  << "' is [ " << wrapper_version_snapshot << " ]";
        }
      }

538 539 540 541 542 543 544 545 546 547 548 549 550
      /**
       * [ Why need temporary inputs here? ]
       *
       * - Hook execution should not change original input tensor.
       *   User can register hook for Tensor's gradient, It is expected
       *   that the hook only affects the gradient of the backward
       *   propagation, and does not affect the gradient value input
       *   as the hook.
       * - use `tmp_ins_ptr`, only copy bwd_ins when the var in bwd_ins
       *   hold hooks
       */
      auto tmp_ins_ptr = CallGradientHooks(bwd_ins, cur_op.Type());

551 552 553 554
      if (!tmp_ins_ptr) {
        PerformBackwardInplace(cur_op.Type(), bwd_ins, &tmp_outs);
      }

555 556
      {
        VLOG(3) << "Start to execute grad op " << cur_op.Type();
557 558 559
        try {
          if (tmp_ins_ptr == nullptr) {
            OpBase::Run(cur_op.InnerOp(), bwd_ins, tmp_outs, cur_op.Attrs(),
560
                        cur_op.DefaultAttrsMap(), cur_op.place());
561 562
          } else {
            OpBase::Run(cur_op.InnerOp(), *tmp_ins_ptr, tmp_outs,
563 564
                        cur_op.Attrs(), cur_op.DefaultAttrsMap(),
                        cur_op.place());
565 566 567 568 569 570 571
          }
        } catch (platform::EnforceNotMet& exception) {
          Clear();
          throw std::move(exception);
        } catch (std::exception& ex) {
          Clear();
          PADDLE_THROW(platform::errors::External("%s", ex.what()));
572
        }
573 574
      }

575 576 577 578 579 580 581
      // Function Post Hook
      if (cur_op.HasVoidFunctionPostHook()) {
        for (const auto& hook : cur_op.GetVoidFunctionPostHooks()) {
          (*hook)();
        }
      }

582 583 584 585
      for (auto& pair : inplace_output_grad_var_list_) {
        *pair.first = std::move(*pair.second);
      }

586 587 588 589 590 591 592 593 594 595
      // Step 2: Sum Gradient of This graph
      for (auto& pair : need_accu_var_list_) {
        pair.first->SumGrad(std::move(pair.second), cur_op.id());
      }

      // Step 3: Call Hooks && Sum Gradient with Pre-Graph && Call BackwardHooks
      for (auto* accumulator : leaf_accumulators_) {
        if (!accumulator->SumGradCompleted()) {
          continue;
        }
596 597
        // 1. Call Hooks for `inner_var_`
        accumulator->CallGradientHooks();
598

599
        // 2. Sum Gradient `inner_var_` to `var_` of Current or Previous Graph
600 601
        accumulator->AccumulateGrad();

602 603
        // 3. Call backward Hooks for `var_`
        accumulator->CallReduceHooks();
604 605
      }

606
      need_accu_var_list_.clear();
607
      inplace_output_grad_var_list_.clear();
608
      leaf_accumulators_.clear();
609

610
      if (!retain_graph_) {
611
        VLOG(3) << "Remove op after op " << cur_op.Type() << " runs";
612 613
        cur_op.ClearBackwardTrace();
      }
614 615 616 617
    }

    // Step 3: Collect ready ops
    for (auto& grad_pending_node : shared_cur_node->GradPendingNodes()) {
618 619 620
      PADDLE_ENFORCE_NOT_NULL(
          grad_pending_node,
          platform::errors::NotFound("Grad pending node is nullptr."));
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
      auto iter = node_deps_.find(grad_pending_node.get());
      if (iter == node_deps_.end()) {
        continue;
      }

      if (--(iter->second) == 0) {
        q.push(grad_pending_node);
      }
    }
  }
  Clear();

  VLOG(1) << "Backward op number: " << op_num;
}

void BasicEngine::Clear() {
637
  init_nodes_.clear();
638 639
  node_deps_.clear();
  accumulators_.clear();
640
  accumulators_with_grad_node_.clear();
641
  need_accu_var_list_.clear();
642
  leaf_accumulators_.clear();
643 644 645 646
}

}  // namespace imperative
}  // namespace paddle