regularizer.py 5.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18 19 20 21 22 23
__all__ = ['L1Decay', 'L2Decay']

import paddle.fluid as fluid


class L1Decay(fluid.regularizer.L1Decay):
    """
    Implement the L1 Weight Decay Regularization, which encourages the weights to be sparse.
    
L
littletomatodonkey 已提交
24
    It can be set in :ref:`api_paddle_ParamAttr` or ``optimizer`` (such as :ref:`api_paddle_optimizer_Momentum` ). 
25 26 27 28 29 30
    When set in ``ParamAttr`` , it only takes effect for trainable parameters in this layer. When set in 
    ``optimizer`` , it takes effect for all trainable parameters. When set together, ``ParamAttr`` has 
    higher priority than ``optimizer`` , which means that for a trainable parameter, if regularizer is defined 
    in its ParamAttr, then the regularizer in Optimizer will be ignored. Otherwise the  regularizer
    in Optimizer will be used.
    
L
littletomatodonkey 已提交
31
    In the implementation, the loss function of L1 Weight Decay Regularization is as follows:
32 33 34
	
    .. math::

L
littletomatodonkey 已提交
35
        loss = coeff * reduce\_sum(abs(x))
36 37 38 39 40 41 42 43 44 45 46 47

    Args:
        coeff(float, optional): regularization coeff. Default:0.0.
	
    Examples:
        .. code-block:: python

            # Example1: set Regularizer in optimizer
            import paddle
            from paddle.regularizer import L1Decay
            import numpy as np
            linear = paddle.nn.Linear(10, 10)
L
littletomatodonkey 已提交
48
            inp = paddle.rand(shape=[10, 10], dtype="float32")
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
            out = linear(inp)
            loss = paddle.mean(out)
            beta1 = paddle.to_tensor([0.9], dtype="float32")
            beta2 = paddle.to_tensor([0.99], dtype="float32")
            momentum = paddle.optimizer.Momentum(
                learning_rate=0.1,
                parameters=linear.parameters(),
                weight_decay=L1Decay(0.0001))
            back = out.backward()
            momentum.step()
            momentum.clear_grad()

            # Example2: set Regularizer in parameters
            # Set L1 regularization in parameters.
            # Global regularizer does not take effect on my_conv2d for this case.
            from paddle.nn import Conv2d
            from paddle import ParamAttr
            from paddle.regularizer import L2Decay

            my_conv2d = Conv2d(
                    in_channels=10,
                    out_channels=10,
                    kernel_size=1,
                    stride=1,
                    padding=0,
                    weight_attr=ParamAttr(regularizer=L2Decay(coeff=0.01)),
                    bias_attr=False)
    """

    def __init__(self, coeff=0.0):
        super(L1Decay, self).__init__(coeff)


class L2Decay(fluid.regularizer.L2Decay):
    """
    Implement the L2 Weight Decay Regularization, which helps to prevent the model over-fitting.
    
L
littletomatodonkey 已提交
86
    It can be set in :ref:`api_paddle_ParamAttr` or ``optimizer`` (such as :ref:`api_paddle_optimizer_Momentum` ). 
87 88 89 90 91 92
    When set in ``ParamAttr`` , it only takes effect for trainable parameters in this layer. When set in 
    ``optimizer`` , it takes effect for all trainable parameters. When set together, ``ParamAttr`` has 
    higher priority than ``optimizer`` , which means that for a trainable parameter, if regularizer is defined 
    in its ParamAttr, then the regularizer in Optimizer will be ignored. Otherwise the  regularizer
    in Optimizer will be used.
    
L
littletomatodonkey 已提交
93
    In the implementation, the loss function of L2 Weight Decay Regularization is as follows:
94 95 96

    .. math::

L
littletomatodonkey 已提交
97
        loss = 0.5 * coeff * reduce\_sum(square(x))
98 99 100 101 102 103 104 105 106 107 108 109

    Args:
        regularization_coeff(float, optional): regularization coeff. Default:0.0
	
    Examples:
        .. code-block:: python

            # Example1: set Regularizer in optimizer
            import paddle
            from paddle.regularizer import L2Decay
            import numpy as np
            linear = paddle.nn.Linear(10, 10)
L
littletomatodonkey 已提交
110
            inp = paddle.rand(shape=[10, 10], dtype="float32")
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
            out = linear(inp)
            loss = paddle.mean(out)
            beta1 = paddle.to_tensor([0.9], dtype="float32")
            beta2 = paddle.to_tensor([0.99], dtype="float32")
            momentum = paddle.optimizer.Momentum(
                learning_rate=0.1,
                parameters=linear.parameters(),
                weight_decay=L2Decay(0.0001))
            back = out.backward()
            momentum.step()
            momentum.clear_grad()

            # Example2: set Regularizer in parameters
            # Set L2 regularization in parameters.
            # Global regularizer does not take effect on my_conv2d for this case.
            from paddle.nn import Conv2d
            from paddle import ParamAttr
            from paddle.regularizer import L2Decay

            my_conv2d = Conv2d(
                    in_channels=10,
                    out_channels=10,
                    kernel_size=1,
                    stride=1,
                    padding=0,
                    weight_attr=ParamAttr(regularizer=L2Decay(coeff=0.01)),
                    bias_attr=False)
    """

    def __init__(self, coeff=0.0):
        super(L2Decay, self).__init__(coeff)