maxouting.cc 3.9 KB
Newer Older
W
wanghaox 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/math/maxouting.h"

namespace paddle {
namespace operators {
namespace math {

/*
 * All tensors are in NCHW format.
W
wanghaox 已提交
23
 * groups mustbe > 1
W
wanghaox 已提交
24 25 26 27 28
 */
template <typename MaxOutProcess, typename T>
class MaxOutFunctor<platform::CPUPlace, MaxOutProcess, T> {
 public:
  void operator()(const platform::DeviceContext& context,
W
wanghaox 已提交
29 30 31 32
                  const framework::Tensor& input,
                  framework::Tensor * output,
                  int groups,
                  MaxOutProcess maxout_process) {
W
wanghaox 已提交
33 34 35
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
W
wanghaox 已提交
36
    const int output_channels = output->dims()[1];
W
wanghaox 已提交
37 38

    int fea_size = input_height * input_width;
W
wanghaox 已提交
39
    // c_size mean output one batch size
W
wanghaox 已提交
40 41 42
    int c_size = fea_size * output_channels;

    const T* input_data = input.data<T>();
W
wanghaox 已提交
43
    T* output_data = output->mutable_data<T>(context.GetPlace());
W
wanghaox 已提交
44

W
wanghaox 已提交
45
    for (int i = 0; i < batch_size; ++i) {
W
wanghaox 已提交
46 47 48
      int new_bindex =  c_size * i;
      for (int c = 0; c < output_channels; ++c) {
        int new_cindex = fea_size * c;
W
wanghaox 已提交
49
        for (int f = 0; f < fea_size; ++f) {
W
wanghaox 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
          T ele = maxout_process.initial();
          for (int ph = 0; ph < groups; ++ph) {
            maxout_process.compute(ele,
              input_data[(new_bindex+new_cindex) * groups+ph*fea_size+f]);
          }
          output_data[(new_bindex+new_cindex+f)] = ele;
        }
      }
    }
  }
};



template <class T>
class MaxOutGradFunctor<platform::CPUPlace, T> {
public:
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input,
                  framework::Tensor& input_grad,
                  const framework::Tensor& output,
                  const framework::Tensor& output_grad,
W
wanghaox 已提交
72
                  int groups) {
W
wanghaox 已提交
73 74 75
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
W
wanghaox 已提交
76
    const int output_channels = output.dims()[1];
W
wanghaox 已提交
77 78 79 80 81 82 83 84

    int fea_size = input_height * input_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
    T* input_grad_data = input_grad.mutable_data<T>(context.GetPlace());

W
wanghaox 已提交
85
    for (int i = 0; i < batch_size; ++i) {
W
wanghaox 已提交
86 87 88
      int blen = fea_size * output_channels * i;
      for (int c = 0; c < output_channels; ++c) {
        int clen = fea_size * c;
W
wanghaox 已提交
89
        for (int f = 0; f < fea_size; ++f) {
W
wanghaox 已提交
90 91 92
          int input_idx = 0;
          bool stop = false;
          int output_idx = blen + clen + f;
W
wanghaox 已提交
93
          for (int g = 0; g < groups && !stop; ++g) {
W
wanghaox 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
              input_idx = (blen + clen) * groups + fea_size * g + f;
              input_grad_data[input_idx] = 0;
              if (input_data[input_idx] == output_data[output_idx]) {
                input_grad_data[input_idx] += output_grad_data[output_idx];
                stop = true;
              }
          }
        }
      }
    }
  }
};

template class MaxOutGradFunctor<platform::CPUPlace, float>;
template class MaxOutGradFunctor<platform::CPUPlace, double>;
template class MaxOutFunctor<platform::CPUPlace,
W
wanghaox 已提交
110
                             math::MaxOut<float>, float>;
W
wanghaox 已提交
111
template class MaxOutFunctor<platform::CPUPlace,
W
wanghaox 已提交
112
                             math::MaxOut<double>, double>;
W
wanghaox 已提交
113 114 115 116

}  // namespace math
}  // namespace operators
}  // namespace paddle