activations.py 4.7 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

__all__ = ["TanhActivation", "SigmoidActivation",
           "SoftmaxActivation", "IdentityActivation", "LinearActivation",
17
           'SequenceSoftmaxActivation', 'ExpActivation',
18 19 20 21
           "ReluActivation", "BReluActivation", "SoftReluActivation",
           "STanhActivation",
           "AbsActivation", "SquareActivation",
           "BaseActivation"]
Z
zhangjinchao01 已提交
22 23 24 25


class BaseActivation(object):
    """
L
luotao02 已提交
26 27 28 29 30 31 32 33 34
    A mark for activation class. 
    Each activation inherit BaseActivation, which has two parameters.
     
    :param name: activation name in paddle config.
    :type name: basestring
    :param support_hppl: True if supported by hppl. HPPL is a library used by paddle
                         internally. Currently, lstm layer can only use activations
                         supported by hppl.
    :type support_hppl: bool
Z
zhangjinchao01 已提交
35 36 37 38 39 40
    """

    def __init__(self, name, support_hppl):
        self.name = name
        self.support_hppl = support_hppl

41 42 43
    def __repr__(self):
        return self.name

Z
zhangjinchao01 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

class TanhActivation(BaseActivation):
    """
    Tanh activation.

    .. math::

       f(z)=tanh(z)=\\frac{e^z-e^{-z}}{e^z+e^{-z}}
    """

    def __init__(self): BaseActivation.__init__(self, 'tanh', True)


class SigmoidActivation(BaseActivation):
    """
    Sigmoid activation.

    .. math::

       f(z) = \\frac{1}{1+exp(-z)}
    """

    def __init__(self): BaseActivation.__init__(self, 'sigmoid', True)


class SoftmaxActivation(BaseActivation):
    """
    Softmax activation for simple input



    .. math::

       P(y=j|x) = \\frac{e^{x_j}} {\\sum^K_{k=1} e^{x_j} }
    """

    def __init__(self):
        BaseActivation.__init__(self, 'softmax', False)


class SequenceSoftmaxActivation(BaseActivation):
    """
    Softmax activation for one sequence. The dimension of input feature must be
    1 and a sequence.

    ..  code:: python

        result = softmax(for each_feature_vector[0] in input_feature)
        for i, each_time_step_output in enumerate(output):
            each_time_step_output = result[i]
    """

    def __init__(self):
        BaseActivation.__init__(self, 'sequence_softmax', False)


class IdentityActivation(BaseActivation):
    """
    Identity Activation.

    Just do nothing for output both forward/backward.
    """

    def __init__(self): BaseActivation.__init__(self, '', False)


LinearActivation = IdentityActivation


class ReluActivation(BaseActivation):
    """
    Relu activation.

    forward. :math:`y = max(0, z)`

    derivative:

    .. math::

       1  &\\quad if z > 0 \\\\
       0  &\\quad\\mathrm{otherwize}
    """

    def __init__(self): BaseActivation.__init__(self, 'relu', True)


class BReluActivation(BaseActivation):
    """
    BRelu Activation.

    forward.  :math:`y = min(24, max(0, z))`

    derivative:

    .. math::

       1  &\\quad if 0 < z < 24 \\\\
       0  &\\quad \\mathrm{otherwise}
    """

    def __init__(self): BaseActivation.__init__(self, 'brelu', False)


class SoftReluActivation(BaseActivation):
    """
    SoftRelu Activation.
    """

    def __init__(self): BaseActivation.__init__(self, 'softrelu', False)

class STanhActivation(BaseActivation):
    """
    Scaled Tanh Activation.

    .. math::

       f(z) = 1.7159 * tanh(2/3*z)
    """

    def __init__(self): BaseActivation.__init__(self, 'stanh', False)


class AbsActivation(BaseActivation):
    """
    Abs Activation.

    Forward:    :math:`f(z) = abs(z)`

    Derivative:

    .. math::

       1 &\\quad if \\quad z > 0 \\\\
       -1 &\\quad if \\quad z < 0 \\\\
       0 &\\quad if \\quad z = 0
    """

    def __init__(self): BaseActivation.__init__(self, 'abs', False)


class SquareActivation(BaseActivation):
    """
    Square Activation.

    .. math::
       f(z) = z^2.
    """

    def __init__(self): BaseActivation.__init__(self, 'square', False)
193 194 195 196 197 198 199 200 201

class ExpActivation(BaseActivation):
    """
    Exponential Activation.
    
    .. math::
       f(z) = e^z.
    """
    def __init__(self): BaseActivation.__init__(self, 'exponential', False)
202 203 204 205 206 207 208 209 210

class LogActivation(BaseActivation):
    """
    Logarithm Activation.

    .. math::
       f(z) = log(z)
    """
    def __init__(self): BaseActivation.__init__(self, 'log', False)