vgg_16_mnist.py 1.6 KB
Newer Older
L
Luo Tao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.trainer_config_helpers import *

is_predict = get_config_arg("is_predict", bool, False)

####################Data Configuration ##################

if not is_predict:
    data_dir = './data/'
    define_py_data_sources2(
        train_list=data_dir + 'train.list',
        test_list=data_dir + 'test.list',
        module='mnist_provider',
        obj='process')

######################Algorithm Configuration #############
settings(
    batch_size=128,
    learning_rate=0.1 / 128.0,
    learning_method=MomentumOptimizer(0.9),
    regularization=L2Regularization(0.0005 * 128))

#######################Network Configuration #############

data_size = 1 * 28 * 28
label_size = 10
img = data_layer(name='pixel', size=data_size)

# small_vgg is predined in trainer_config_helpers.network
predict = small_vgg(input_image=img, num_channels=1, num_classes=label_size)

if not is_predict:
    lbl = data_layer(name="label", size=label_size)
    inputs(img, lbl)
    outputs(classification_cost(input=predict, label=lbl))
else:
    outputs(predict)