graph_pattern_detector.h 22.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#ifdef PADDLE_WITH_TESTING
#include <gtest/gtest_prod.h>
#endif

#include <numeric>
22 23 24
#include <string>
#include <utility>
#include <vector>
25 26
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/node.h"
27
#include "paddle/fluid/inference/analysis/dot.h"
28 29 30 31

namespace paddle {
namespace framework {
namespace ir {
32
class PDPattern;
33

34
// Some basic terminologies:
35 36 37 38 39 40 41 42 43
//   - PDPattern: a pattern defined as a data flow graph.
//   - PDNode: the node in the pattern, each PDNode represents an `ir::Node`
//     that meets some conditions defined in `PDNode.teller`.
//   - A pattern is defined with PDNodes with edges.

// Pattern detector node. This node helps to build a pattern.
struct PDNode {
  // tell whether an ir::Node* is a candidation for a PDNode.
  using teller_t = std::function<bool(Node*)>;
44
  enum class Type { kOp, kVar };
Y
Yan Chunwei 已提交
45 46 47 48 49 50
  enum class Role {
    kUnknown,      // No role,
    kInput,        // an input and will be retained,
    kOutput,       // an output and will be retained,
    kIntermediate  // will be removed after handler.
  };
51

52 53 54
  // this link to others
  PDNode& LinksTo(const std::vector<PDNode*>& others);
  PDNode& LinksFrom(const std::vector<PDNode*>& others);
55 56

  bool Tell(Node* node) const {
Y
Yan Chunwei 已提交
57 58 59 60 61 62
    if (teller_) return teller_(node);

    for (auto& asrt : asserts_) {
      if (!asrt(node)) return false;
    }
    return true;
63 64
  }

65 66 67
  bool IsOp() const { return type_ == Type::kOp; }
  bool IsVar() const { return type_ == Type::kVar; }

68 69 70
  const std::string& name() const { return name_; }

  PDNode& operator=(const PDNode&) = delete;
Y
Yan Chunwei 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
  PDNode(const PDNode&) = delete;

  // Mark this node is an Input of a subgraph and will be retained.
  PDNode* AsInput() {
    role_ = Role::kInput;
    return this;
  }
  // Mark this node is an Output of a subgraph and will be retained.
  PDNode* AsOutput() {
    role_ = Role::kOutput;
    return this;
  }
  // Mark this node will be removed, so all the links should be inside a matched
  // sub-graph.
  PDNode* AsIntermediate() {
    role_ = Role::kIntermediate;
    return this;
  }

  bool IsIntermediate() const { return role_ == Role::kIntermediate; }
  bool IsInput() const { return role_ == Role::kInput; }
  bool IsOutput() const { return role_ == Role::kOutput; }

  // Assertions, helper functions to simplify the pattern definition.
  PDNode* assert_is_op();
  PDNode* assert_is_op(const std::string& op_type);
  PDNode* assert_is_var();
C
chengduo 已提交
98
  PDNode* assert_is_not_ctrl_var();
Y
Yan Chunwei 已提交
99 100 101
  PDNode* assert_var_not_persistable();
  PDNode* assert_is_persistable_var();
  PDNode* assert_is_op_output(const std::string& op_type);
102 103
  PDNode* assert_is_op_output(const std::string& op_type,
                              const std::string& argument);
Y
Yan Chunwei 已提交
104
  PDNode* assert_is_op_input(const std::string& op_type);
105 106
  PDNode* assert_is_op_input(const std::string& op_type,
                             const std::string& argument);
Y
Yan Chunwei 已提交
107 108 109 110 111 112 113 114 115
  PDNode* assert_is_op_nth_input(const std::string& op_type,
                                 const std::string& argument, int nth);
  PDNode* assert_is_op_nth_output(const std::string& op_type,
                                  const std::string& argument, int nth);
  PDNode* assert_is_only_input_of_op(const std::string& op_type);
  PDNode* assert_is_only_output_of_op(const std::string& op_type);
  PDNode* assert_op_has_n_inputs(const std::string& op_type, size_t n);
  PDNode* assert_op_has_n_outputs(const std::string& op_type, size_t n);
  PDNode* assert_more(teller_t&& teller);
116

C
chengduo 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130
  PDNode* assert_is_ops_output(const std::unordered_set<std::string>& op_types);
  PDNode* assert_is_ops(const std::unordered_set<std::string>& op_types);
  PDNode* assert_is_ops_output(const std::unordered_set<std::string>& op_types,
                               const std::string& argument);
  PDNode* assert_is_ops_nth_input(
      const std::unordered_set<std::string>& op_types,
      const std::string& argument, int nth);
  PDNode* assert_is_ops_input(const std::unordered_set<std::string>& op_types);
  PDNode* assert_is_ops_input(const std::unordered_set<std::string>& op_types,
                              const std::string& argument);
  PDNode* assert_is_ops_nth_output(
      const std::unordered_set<std::string>& op_types,
      const std::string& argument, int nth);

T
tensor-tang 已提交
131 132 133 134 135 136 137 138 139
  template <typename T>
  PDNode* assert_op_attr(const std::string& attr_name, const T& attr) {
    asserts_.emplace_back([=](Node* x) {
      return x && x->IsOp() && x->Op()->HasAttr(attr_name) &&
             boost::get<T>(x->Op()->GetAttr(attr_name)) == attr;
    });
    return this;
  }

140
 private:
Y
Yan Chunwei 已提交
141 142 143
  PDNode(PDPattern* pattern, const std::string& name = "",
         Type type = Type::kVar)
      : pattern_(pattern), name_(name), type_(type) {}
144 145 146 147 148 149 150 151 152 153 154 155 156
  PDNode(teller_t&& teller, PDPattern* pattern, const std::string& name = "",
         Type type = Type::kVar)
      : teller_(std::move(teller)),
        pattern_(pattern),
        name_(name),
        type_(type) {
    PADDLE_ENFORCE(teller_ != nullptr, "invalid teller functer is set.");
  }

  PDNode(PDNode&& other) = default;

  friend class PDPattern;

Y
Yan Chunwei 已提交
157
  // Will removed latter.
158
  teller_t teller_;
Y
Yan Chunwei 已提交
159
  std::vector<teller_t> asserts_;
160
  PDPattern* pattern_;
161
  std::string name_;
162
  Type type_;
Y
Yan Chunwei 已提交
163
  Role role_{Role::kUnknown};
164 165 166 167 168 169 170 171 172 173 174 175
};

/*
 * A pattern in a graph, which defined with PDNode and edges. Most graph
 * patterns can be divided into PDNodes and link relations between them.
 *
 * For example, the FC fusion need to filter the MUL and ELEMENTWISE_ADD
 * operators from the computation graph, the MUL's output should have only one
 * consumer which is the ELEMENTWISE_ADD.
 * This pattern can be defined as with the following pseudo codes
 *
 *     // Create two operator PDNodes.
Y
Yan Chunwei 已提交
176 177
 *     MUL = PDPattern.NewNode().assert_is_op("mul");
 *     ELE = PDPattern.NewNode().assert_is_op("elementwise_add");
178
 *     // Create the variable PDNodes.
Y
Yan Chunwei 已提交
179 180 181 182 183 184
 *     MUL_out = PDPattern.NewNode().assert_is_op_output("mul") \
 *                                  .assert_is_op_input("elementwise_add") \
 *                                  .AsIntermediate();
 *     // Add relations.
 *     MUL->LinksTo({MUL_out});
 *     MUL_out->LinksTo({ELE});
185
 *
Y
Yan Chunwei 已提交
186 187
 * One can add more specific asserts for PDNodes or edges, both the Operator
 * and Variable Nodes can be ruled in PDNode.assert_more(...).
188 189 190 191 192 193 194 195 196 197 198
 *
 * PDPattern can record the general patterns, such as the pattern represents
 *   - Op in CPU -> Op in GPU -> Op in CPU, to findout the IO abnormal place.
 *   - Ops whose inputs and outputs share the same variables
 */
class PDPattern {
 public:
  using edge_t = std::pair<PDNode*, PDNode*>;

  void AddEdge(PDNode* a, PDNode* b);

199
  PDNode* NewNode(PDNode::teller_t&& teller, const std::string& name = NewID());
Y
Yan Chunwei 已提交
200
  PDNode* NewNode(const std::string& name = NewID());
201 202 203
  PDNode* NewNode(const std::string& prefix, const std::string& name) {
    return NewNode(prefix + "/" + name);
  }
Y
Yan Chunwei 已提交
204
  PDNode* RetrieveNode(const std::string& id) const;
205 206 207 208

  const std::vector<std::unique_ptr<PDNode>>& nodes() const { return nodes_; }
  const std::vector<edge_t>& edges() const { return edges_; }

209 210
  std::string DotString() const;

211 212 213 214 215 216
 private:
#ifdef PADDLE_WITH_TESTING
  FRIEND_TEST(PDPattern, AddEdge);
  FRIEND_TEST(PDPattern, NewNode);
#endif

217 218
  static std::string NewID() { return "pdnode-" + std::to_string(id_++); }

219 220
  std::vector<std::unique_ptr<PDNode>> nodes_;
  std::vector<edge_t> edges_;
221 222
  std::unordered_map<std::string, PDNode*> node_map_;
  static size_t id_;
223 224 225
};

/*
226
 * GraphPatternDetector helps to detect the specific patterns in the graph.
227 228 229 230 231 232 233 234 235 236 237
 * Input a pattern, output a list of the matched subgraphs/nodes.
 * This helper can be used to support fuse(conv+batchnorm => batchnorm e.g.).
 *
 * The algorithm has three phases:
 *   1. Mark the nodes that match the defined PDNodes in a PDPattern,
 *   2. Extend a PDNode to subgraphs by deducing the connection relation defined
 *      in PAPattern(the edges),
 *   3. Get the filtered subgraphs and treat them with a pre-defined handler.
 *
 * Usage:
 *    // Create a detector
238
 *    GraphPatternDetector detector;
239 240 241 242 243 244 245 246
 *    // Define the detector's pattern, by adding PDNode and define the edges.
 *    auto* node0 = detector.mutable_pattern().AddNode(...)
 *    auto* node1 = detector.mutable_pattern().AddNode(...)
 *    node0->teller = some lambda.
 *    node1->teller = some lambda.
 *    detector.mutable_pattern().AddEdge(node0, node1);
 *    // Create an handler, to define the behavior of treating the filtered
 *    // subgraphs that comply with the patterns.
247
 *    GraphPatternDetector::handle_t handler = some labmda
248 249 250
 *    // Execute the detector.
 *    detector(&graph, handler);
 */
251
class GraphPatternDetector {
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
 public:
  using subgraph_t = std::unordered_map<PDNode*, Node*>;

  // Operate on the detected pattern.
  using handle_t =
      std::function<void(const subgraph_t& /*hitted pattern*/, Graph*)>;

  void operator()(Graph* graph, handle_t handler);

  const PDPattern& pattern() const { return pattern_; }
  PDPattern* mutable_pattern() { return &pattern_; }

 private:
  // Mark the nodes that fits the pattern.
  bool MarkPDNodesInGraph(const ir::Graph& graph);

  // Detect all the pattern and output the hit records.
  std::vector<subgraph_t> DetectPatterns();

  // Remove duplicate patterns.
  void UniquePatterns(std::vector<subgraph_t>* subgraphs);

  // Remove overlapped match subgraphs, when overlapped, keep the previous one.
Y
Yan Chunwei 已提交
275 276
  // The intermediate PDNodes will be removed, so can't shared by multiple
  // patterns.
277 278
  void RemoveOverlappedMatch(std::vector<subgraph_t>* subgraphs);

Y
Yan Chunwei 已提交
279 280 281
  // Validate whether the intermediate nodes are linked by external nodes.
  void ValidateByNodeRole(std::vector<subgraph_t>* subgraphs);

282 283 284 285 286 287 288 289 290 291 292 293
#ifdef PADDLE_WITH_TESTING
  FRIEND_TEST(GraphPatternDetecter, MarkPDNodesInGraph);
  FRIEND_TEST(GraphPatternDetecter, DetectPatterns);
#endif

 private:
  using hit_rcd_t =
      std::pair<Node* /*node in graph*/, PDNode* /*node in pattern*/>;
  PDPattern pattern_;
  std::unordered_map<const PDNode*, std::unordered_set<Node*>> pdnodes2nodes_;
};

294 295
// some helper methods.

296 297 298 299 300
// Tell if a var links to an Op
bool VarLinksToOp(Node* node, const std::string& op_type);

// Tell if an op links to a var
bool VarLinksFromOp(Node* node, const std::string& op_type);
301 302

// Check whether a var node is a op node's nth input.
303
bool IsNthInput(Node* var, Node* op, const std::string& argument, size_t nth);
304

305 306 307 308 309 310 311 312
// Tell whether a var node is a op node's nth output.
bool IsNthOutput(Node* var, Node* op, const std::string& argument, size_t nth);

// Graph safely remove some nodes, will automatically clean up the edges.
void GraphSafeRemoveNodes(Graph* graph,
                          const std::unordered_set<const Node*>& nodes);

// Some pre-defined patterns those can be reused in multiple passes.
Y
Yan Chunwei 已提交
313 314
// The related Fluid Layer or Op should be one pattern here for better reusage
// accross different fusion.
315 316
namespace patterns {

Y
Yan Chunwei 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
struct KeyCounter {
  static KeyCounter& Instance() {
    static KeyCounter x;
    return x;
  }

  int IncCounter(const std::string& key) { return dic_[key]++; }

 private:
  std::unordered_map<std::string, size_t> dic_;
};

// Generate a unique PDNode's name with name_scope and id.
// The format is {name_scope}/{repr}/{id}/{name}
static std::string PDNodeName(const std::string& name_scope,
                              const std::string& repr, size_t id,
                              const std::string& name) {
  return string::Sprintf("%s/%s/%d/%s", name_scope, repr, id, name);
}
// Generate a unique PDNode's name.
// The format is {name_scope}/{repr}/{id}
static std::string PDNodeName(const std::string& name_scope,
                              const std::string& repr) {
  return string::Sprintf("%s/%s/%d", name_scope, repr,
                         KeyCounter::Instance().IncCounter(repr));
}
// Generate a unique key. It can be used for a universally unique temporary
// name.
// The format is {repr}/{id}
static std::string UniqueKey(const std::string& repr) {
  return string::Sprintf("%s/%d", repr,
                         KeyCounter::Instance().IncCounter(repr));
}

// Declare a PDNode in a pattern, will create two methods:
// std::string xxx_repr(); return this PDNode's string id.
// PDNode* xxx_n(); return the corresponding PDNode.
#define PATTERN_DECL_NODE(name__)                        \
  std::string name__##_repr() const {                    \
    return PDNodeName(name_scope_, repr_, id_, #name__); \
  }                                                      \
  PDNode* name__##_n() const { return pattern->RetrieveNode(name__##_repr()); }

// Get an ir::Node* from the matched subgraph.
// var: variable.
// arg: the argument declared by PATTERN_DECL_NODE in a pattern definition.
// pat: the pattern object.
#define GET_IR_NODE_FROM_SUBGRAPH(var, arg, pat)                    \
  PADDLE_ENFORCE(subgraph.count(pat.arg##_n()),                     \
                 "Node not found for PDNode %s", pat.arg##_repr()); \
  Node* var = subgraph.at(pat.arg##_n());                           \
  PADDLE_ENFORCE(var, "node %s not exists in the sub-graph", #arg)

// The base class of all the patterns.
struct PatternBase {
  PatternBase(PDPattern* pattern, const std::string& name_scope,
              const std::string& repr)
      : pattern(pattern),
        name_scope_(name_scope),
        repr_(repr),
        id_(KeyCounter::Instance().IncCounter(repr)) {}

  PDPattern* pattern;

 protected:
  std::string name_scope_;
  std::string repr_;
  size_t id_;
};

S
Sylwester Fraczek 已提交
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
// Conv with batch norm
// op: conv + (elementwise_add +) batch_norm
// named nodes:
// conv_weight, conv_out, conv,
// bn_x, bn_scale, bn_bias, bn_mean,  bn_variance,
// bn_batch_norm, bn_y, bn_mean_out, bn_variance_out,
// bn_saved_mean, bn_saved_variance
struct ConvBN : public PatternBase {
  ConvBN(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "conv_bn") {}

  PDNode* operator()(PDNode* conv_input, bool with_eltwise_add);

  // declare operator node's name
  PATTERN_DECL_NODE(conv);
  PATTERN_DECL_NODE(batch_norm);
  PATTERN_DECL_NODE(eltwise);  // ELEMENTWISE_ADD
  // CONV inputs
  PATTERN_DECL_NODE(conv_weight);  // Filter
  // CONV outputs
  PATTERN_DECL_NODE(conv_out);  // tmp
  // ELTWISE inputs
  PATTERN_DECL_NODE(eltwise_y_in);
  // ELTWISE outputs
  PATTERN_DECL_NODE(eltwise_out);  // tmp
  // BN inputs
  PATTERN_DECL_NODE(bn_scale);
  PATTERN_DECL_NODE(bn_bias);
  PATTERN_DECL_NODE(bn_mean);
  PATTERN_DECL_NODE(bn_variance);
  // BN outputs
  PATTERN_DECL_NODE(bn_out);  // Out
  PATTERN_DECL_NODE(bn_mean_out);
  PATTERN_DECL_NODE(bn_variance_out);
  PATTERN_DECL_NODE(bn_saved_mean);
  PATTERN_DECL_NODE(bn_saved_variance);
};

425 426 427 428
// CONV with ReLU
// op: conv + relu
// named nodes:
// conv_input, conv_weight,
429
// conv_out, conv,
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
// relu_out, relu
struct ConvReLU : public PatternBase {
  ConvReLU(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "conv_relu") {}

  PDNode* operator()(PDNode* conv_input);

  // declare operator node's name
  PATTERN_DECL_NODE(conv);
  PATTERN_DECL_NODE(relu);
  // declare variable node's name
  PATTERN_DECL_NODE(conv_weight);
  PATTERN_DECL_NODE(conv_out);
  PATTERN_DECL_NODE(relu_out);
};

T
tensor-tang 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
// SEQCONV with Elementwise_Add ReLU
// op: seqconv + elementwise_add + relu
// named nodes:
// seqconv_input, seqconv_weight,
// seqconv_out, seqconv,
// elementwise_add_bias, elementwise_add_out, elementwise_add
// relu_out, relu
struct SeqConvEltAddRelu : public PatternBase {
  SeqConvEltAddRelu(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "seqconv_eltadd_relu") {}

  PDNode* operator()(PDNode* seqconv_input);

  // declare operator node's name
  PATTERN_DECL_NODE(seqconv);
  PATTERN_DECL_NODE(eltadd);
  PATTERN_DECL_NODE(relu);
  // declare variable node's name
  PATTERN_DECL_NODE(seqconv_weight);
  PATTERN_DECL_NODE(seqconv_out);
  PATTERN_DECL_NODE(eltadd_bias);
  PATTERN_DECL_NODE(eltadd_out);
  PATTERN_DECL_NODE(relu_out);
};

471 472 473 474 475
// FC with bias
// op: mul + elementwise_add
// named nodes:
// mul, elementwise_add
// w, mul_out, bias, fc_out
Y
Yan Chunwei 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
struct FC : public PatternBase {
  FC(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "fc") {}

  PDNode* operator()(PDNode* x, bool with_bias);

  // declare operator node's name
  PATTERN_DECL_NODE(fc);
  PATTERN_DECL_NODE(mul);
  PATTERN_DECL_NODE(elementwise_add);
  // declare variable node's name
  PATTERN_DECL_NODE(w);
  PATTERN_DECL_NODE(mul_out);  // (x,w) -> mul_out
  PATTERN_DECL_NODE(bias);
  PATTERN_DECL_NODE(Out);
};

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
// Embedding
struct Embedding : public PatternBase {
  Embedding(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "embedding") {}

  PDNode* operator()(PDNode* x);

  // declare operator node's name
  PATTERN_DECL_NODE(lookup_table);
  // Inputs
  //
  PATTERN_DECL_NODE(Ids);
  PATTERN_DECL_NODE(W);  // embeddings
  // Outputs
  PATTERN_DECL_NODE(Out);
};

Y
Yan Chunwei 已提交
510 511 512
struct LSTM : public PatternBase {
  LSTM(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "lstm") {}
513

Y
Yan Chunwei 已提交
514
  PDNode* operator()(PDNode* x);
515

Y
Yan Chunwei 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
  // Operators
  PATTERN_DECL_NODE(lstm);

  // Inputs
  PATTERN_DECL_NODE(Input);
  PATTERN_DECL_NODE(H0);
  PATTERN_DECL_NODE(C0);
  PATTERN_DECL_NODE(Weight);
  PATTERN_DECL_NODE(Bias);

  // Outputs
  PATTERN_DECL_NODE(Hidden);
  PATTERN_DECL_NODE(Cell);
  PATTERN_DECL_NODE(BatchGate);
  PATTERN_DECL_NODE(BatchCellPreAct);
};

struct GRU : public PatternBase {
  GRU(PDPattern* pattern, const std::string& name_scope)
S
superjomn 已提交
535
      : PatternBase(pattern, name_scope, "gru") {}
Y
Yan Chunwei 已提交
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551

  PDNode* operator()(PDNode* x);

  // Operators
  PATTERN_DECL_NODE(gru);

  // Inputs
  PATTERN_DECL_NODE(Bias);
  PATTERN_DECL_NODE(Weight);

  // Outputs
  PATTERN_DECL_NODE(BatchGate);
  PATTERN_DECL_NODE(BatchResetHiddenPrev);
  PATTERN_DECL_NODE(BatchHidden);
  PATTERN_DECL_NODE(Hidden);
};
T
tensor-tang 已提交
552

C
chengduo 已提交
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
// The following patterns are used to fuse elewise_add and act
// formula: act(ele_add(x, y))
// op: elementwise_add + act
// named nodes: elementwise_add, act
//              ele_x, ele_y, elewise_add_out, act_out
struct ElewiseAddAct : public PatternBase {
  ElewiseAddAct(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "elewise_add_act") {}

  PDNode* operator()(PDNode* x, std::unordered_set<std::string> acts);

  // declare operator node's name
  PATTERN_DECL_NODE(ele_add);
  PATTERN_DECL_NODE(act);
  // declare variable node's name
  PATTERN_DECL_NODE(elewise_add_out);
  PATTERN_DECL_NODE(ele_y);
  PATTERN_DECL_NODE(act_out);
};

// formula: ele_add(x, act(y))
// op: elementwise_add + act
// named nodes: elementwise_add, act
//              act_in, act_out, ele_x, elewise_add_out
struct ActElewiseAdd : public PatternBase {
  ActElewiseAdd(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "act_elewise_add") {}

  PDNode* operator()(PDNode* x, std::unordered_set<std::string> acts);

  // declare operator node's name
  PATTERN_DECL_NODE(act);
  PATTERN_DECL_NODE(ele_add);
  // declare variable node's name
  PATTERN_DECL_NODE(act_out);
  PATTERN_DECL_NODE(ele_x);
  PATTERN_DECL_NODE(elewise_add_out);
};

// the backward of act(ele_add(x, y))
// the act is inplace.
// op: elementwise_add_grad + act_grad
// named nodes: elementwise_add_grad, act_grad
//              act_out, act_out_g, ele_y, d_itermediate_out, d_ele_x, d_ele_y
struct ElewiseAddActInplaceGrad : public PatternBase {
  ElewiseAddActInplaceGrad(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "elewise_add_act_grad1") {}

  // act_grad: in["Out", "Out@GRAD"], out["X@GRAD"]
  // ele_add_grad: in["Y", "Out@GRAD"], out["X@GRAD", "Y@GRAD"]
  PDNode* operator()(PDNode* x, std::unordered_set<std::string> acts);

  // declare operator node's name
  PATTERN_DECL_NODE(act_grad);
  PATTERN_DECL_NODE(ele_add_grad);
  // declare variable node's name
  PATTERN_DECL_NODE(act_out);
  PATTERN_DECL_NODE(d_itermediate_out);
  PATTERN_DECL_NODE(d_ele_x);
  PATTERN_DECL_NODE(d_ele_y);
  PATTERN_DECL_NODE(ele_y);
};
M
Michal Gallus 已提交
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635

// Conv with Elementwise_add as bias
// op: conv + elementwise_add
// named nodes:
// conv_input, conv_weight,
// conv_out, conv,
// eltwise_bias, eltwise_out,
// elementwise_add
struct ConvBias : public PatternBase {
  ConvBias(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "conv_bias") {}
  PDNode* operator()(PDNode* conv_input);
  // declare operator node's name
  PATTERN_DECL_NODE(conv);
  PATTERN_DECL_NODE(eltwise);
  // declare variable node's name
  PATTERN_DECL_NODE(conv_weight);
  PATTERN_DECL_NODE(conv_out);
  PATTERN_DECL_NODE(eltwise_bias);
  PATTERN_DECL_NODE(eltwise_out);
};
636

637 638 639 640 641 642 643 644 645
// Convolution op
// Forward pass for convolution.
// conv_input, conv_bias and conv_filter are inputs.
// conv_output is a result of the operator.
// residual_data is data used by skip connection.
// If residual connection fusion is on, the formula is:
// conv_output = conv_op(conv_filter, conv_input, conv_bias)
//             + conv_residual_data
// If the fusion is off, conv_residual_data is not added.
646 647 648 649 650 651 652 653 654 655 656 657 658
struct Conv : public PatternBase {
  Conv(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "convolution") {}

  PDNode* operator()();

  PATTERN_DECL_NODE(conv_op);
  PATTERN_DECL_NODE(conv_input);
  PATTERN_DECL_NODE(conv_filter);
  PATTERN_DECL_NODE(conv_residual_data);
  PATTERN_DECL_NODE(conv_output);
};

659 660 661 662
// ElementwiseAdd used in residual connections.
// y_var is used and convolution output.
// The operator is removed, when residual
// connection fusion is on.
663 664 665 666
struct ElementwiseAdd : public PatternBase {
  ElementwiseAdd(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "elementwise_add") {}

667
  PDNode* operator()(PDNode* x_var);
668 669 670 671 672 673

  PATTERN_DECL_NODE(elementwise_add_op);
  PATTERN_DECL_NODE(elementwise_add_x);
  PATTERN_DECL_NODE(elementwise_add_y);
  PATTERN_DECL_NODE(elementwise_add_out);
};
674
}  // namespace patterns
675

Y
Yan Chunwei 已提交
676
// Link two ir::Nodes from each other.
677 678 679 680
#define IR_NODE_LINK_TO(a, b) \
  a->outputs.push_back(b);    \
  b->inputs.push_back(a);

C
chengduo 已提交
681 682 683 684 685 686
// Set the out_var as the output of the op
#define IR_OP_VAR_LINK(op, out_var) \
  op->outputs.push_back(out_var);   \
  out_var->inputs.clear();          \
  out_var->inputs.push_back(op);

687 688 689
}  // namespace ir
}  // namespace framework
}  // namespace paddle