transfer_layout_op.h 4.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/var_type.h"
#include "paddle/fluid/platform/device_context.h"

namespace paddle {
namespace platform {
class DeviceContext;
}  // namespace platform
}  // namespace paddle

namespace paddle {
namespace framework {
32
class Tensor;
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
class Variable;
}  // namespace framework
}  // namespace paddle

namespace paddle {
namespace operators {
using DataLayout = framework::DataLayout;

class TransferLayoutFunctor {
 public:
  TransferLayoutFunctor(const framework::Variable *in, framework::Variable *out,
                        const platform::DeviceContext &dev_ctx,
                        const int dst_layout)
      : in_(in), out_(out), dev_ctx_(dev_ctx), dst_layout_(dst_layout) {}

  void operator()() const {
    auto &in_tensor = *framework::GetLoDTensorOrSelectedRowsValueFromVar(*in_);
    framework::LoDTensor out_tensor;

    auto out_layout = static_cast<DataLayout>(dst_layout_);
    out_tensor.set_layout(out_layout);

#ifdef PADDLE_WITH_MKLDNN
    auto in_layout = in_tensor.layout();
    if (in_layout == DataLayout::kMKLDNN || out_layout == DataLayout::kMKLDNN) {
      PADDLE_ENFORCE_NE(
          in_layout, out_layout,
          platform::errors::PreconditionNotMet(
              "No layout transform needed between two MKLDNN OPKernels."));

      if (in_layout != DataLayout::kMKLDNN &&
          out_layout == DataLayout::kMKLDNN) {
        // Case1 - transform from Non-MKLDNN OPKernel to MKLDNN OPKernel
        // Just set layout/format. No real transform occur

        auto out_format = platform::MKLDNNFormatForSize(
69
            in_tensor.dims().size(), framework::ToMKLDNNFormat(in_layout));
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
        out_tensor.ShareDataWith(in_tensor);
        // For NHWC data we need reshape of tensors as MKL-DNN
        // is expecting NHWC dims description order
        platform::MatchShapeToLayout(&out_tensor, in_layout, out_layout);
        paddle::platform::MKLDNNDeviceContext::tls().set_cur_paddle_data_layout(
            in_layout);
        out_tensor.set_layout(DataLayout::kMKLDNN);
        out_tensor.set_format(out_format);
      } else {
        // Case2 - transfrom from MKLDNN OPKernel to Non-MKLDNN OPKernel
        // Do transform via MKLDNN lib
        innerTransDataLayoutFromMKLDNN(
            in_layout, paddle::platform::MKLDNNDeviceContext::tls()
                           .get_cur_paddle_data_layout(),
            in_tensor, &out_tensor, dev_ctx_.GetPlace());
      }
    } else {
      // Case3 - transfrom between Non-MKLDNN OPKernels
      TransDataLayout(dev_ctx_, in_tensor, &out_tensor);
    }
#else
    // Case3 - transfrom between Non-MKLDNN OPKernels
    TransDataLayout(dev_ctx_, in_tensor, &out_tensor);
#endif
    framework::SetTensorToVariable(*in_, out_tensor, out_);
  }

 private:
  void TransDataLayout(const platform::DeviceContext &dev_ctx,
                       const framework::Tensor &in,
                       framework::Tensor *out) const {
    PADDLE_ENFORCE_EQ(
        framework::arity(in.dims()), 4,
        platform::errors::InvalidArgument(
            "Input dimension arity only can be 4, the input dimension is %s.",
            in.dims()));

    auto src_dim = in.dims();
    std::vector<int64_t> dst_dim;

    auto axis = framework::GetAxis(in.layout(), out->layout());
    dst_dim.resize(axis.size());
    for (size_t i = 0; i < axis.size(); i++) {
      dst_dim[i] = src_dim[axis[i]];
    }

    out->Resize(framework::make_ddim(dst_dim));
    out->mutable_data(in.place(), in.type());

    framework::VisitDataType(
        in.type(), framework::CastDataLayout(&dev_ctx, axis, in, out));
  }

  const framework::Variable *in_;
  framework::Variable *out_;
  const platform::DeviceContext &dev_ctx_;
  const int dst_layout_;
};

}  // namespace operators
}  // namespace paddle