batch_norm_op.cu.cc 11.0 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/batch_norm_op.h"
Q
QI JUN 已提交
16
#include "paddle/framework/data_layout.h"
Q
Qiao Longfei 已提交
17 18 19 20 21 22 23 24 25

#include <cfloat>
#include "paddle/operators/math/math_function.h"
#include "paddle/platform/cudnn_helper.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
Q
QI JUN 已提交
26
using DataLayout = framework::DataLayout;
Q
Qiao Longfei 已提交
27 28 29
template <typename T>
using CudnnDataType = platform::CudnnDataType<T>;

Q
QI JUN 已提交
30 31
void ExtractNCWHD(const framework::DDim &dims, const DataLayout &data_layout,
                  int *N, int *C, int *H, int *W, int *D) {
Q
Qiao Longfei 已提交
32
  *N = dims[0];
33 34 35 36 37 38
  if (dims.size() == 2) {
    *C = dims[1];
    *H = 1;
    *W = 1;
    *D = 1;
  } else {
Q
QI JUN 已提交
39 40
    *C = data_layout == DataLayout::kNCHW ? dims[1] : dims[dims.size() - 1];
    *H = data_layout == DataLayout::kNCHW ? dims[2] : dims[1];
41
    *W = dims.size() > 3
Q
QI JUN 已提交
42
             ? (data_layout == DataLayout::kNCHW ? dims[3] : dims[2])
43 44
             : 1;
    *D = dims.size() > 4
Q
QI JUN 已提交
45
             ? (data_layout == DataLayout::kNCHW ? dims[4] : dims[3])
46 47
             : 1;
  }
Q
Qiao Longfei 已提交
48 49 50
}

template <typename T>
Q
QI JUN 已提交
51 52
class BatchNormKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
Q
Qiao Longfei 已提交
53 54 55 56 57 58 59
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                   "It must use GPUPlace.");
    double epsilon = static_cast<double>(ctx.Attr<float>("epsilon"));
    const float momentum = ctx.Attr<float>("momentum");
    const bool is_test = ctx.Attr<bool>("is_test");
Q
QI JUN 已提交
60 61 62
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
63 64 65 66 67

    // Get the size for each dimension.
    // NCHW [batch_size, in_channels, in_height, in_width]
    const auto *x = ctx.Input<Tensor>("X");
    const auto &x_dims = x->dims();
68 69
    PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                   "The Input dim size should be between 2 and 5");
Q
Qiao Longfei 已提交
70
    int N, C, H, W, D;
Q
QI JUN 已提交
71
    ExtractNCWHD(x_dims, data_layout, &N, &C, &H, &W, &D);
Q
Qiao Longfei 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

    // ------------------- cudnn descriptors ---------------------
    cudnnTensorDescriptor_t data_desc_;
    cudnnTensorDescriptor_t bn_param_desc_;
    cudnnBatchNormMode_t mode_;

    CUDNN_ENFORCE(platform::dynload::cudnnCreateTensorDescriptor(&data_desc_));
    CUDNN_ENFORCE(
        platform::dynload::cudnnCreateTensorDescriptor(&bn_param_desc_));

    if (epsilon <= CUDNN_BN_MIN_EPSILON - FLT_EPSILON) {
      LOG(ERROR) << "Provided epsilon is smaller than "
                 << "CUDNN_BN_MIN_EPSILON. Setting it to "
                 << "CUDNN_BN_MIN_EPSILON instead.";
    }
    epsilon = std::max(epsilon, CUDNN_BN_MIN_EPSILON);
#if CUDNN_VERSION_MIN(7, 0, 0)
    mode_ = CUDNN_BATCHNORM_SPATIAL_PERSISTENT;
#else
    mode_ = CUDNN_BATCHNORM_SPATIAL;
#endif

    VLOG(1) << "Setting descriptors.";
    std::vector<int> dims;
    std::vector<int> strides;
Q
QI JUN 已提交
97
    if (data_layout == DataLayout::kNCHW) {
Q
Qiao Longfei 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
      dims = {N, C, H, W, D};
      strides = {C * H * W * D, H * W * D, W * D, D, 1};
    } else {
      dims = {N, C, H, W, D};
      strides = {H * W * D * C, 1, W * D * C, D * C, C};
    }
    CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
        data_desc_, CudnnDataType<T>::type,
        x_dims.size() > 3 ? x_dims.size() : 4, dims.data(), strides.data()));
    CUDNN_ENFORCE(platform::dynload::cudnnDeriveBNTensorDescriptor(
        bn_param_desc_, data_desc_, mode_));

    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *bias = ctx.Input<Tensor>("Bias");

    auto *y = ctx.Output<Tensor>("Y");
    auto *mean_out = ctx.Output<Tensor>("MeanOut");
    auto *variance_out = ctx.Output<Tensor>("VarianceOut");
    auto *saved_mean = ctx.Output<Tensor>("SavedMean");
    auto *saved_variance = ctx.Output<Tensor>("SavedVariance");

    // alloc memory
    y->mutable_data<T>(ctx.GetPlace());
    mean_out->mutable_data<T>(ctx.GetPlace());
    variance_out->mutable_data<T>(ctx.GetPlace());
    saved_mean->mutable_data<T>(ctx.GetPlace());
    saved_variance->mutable_data<T>(ctx.GetPlace());

Q
QI JUN 已提交
126 127 128 129
    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    math::SetConstant<platform::CUDADeviceContext, T> functor;
    functor(dev_ctx, saved_mean, 0);
    functor(dev_ctx, saved_variance, 0);
Q
Qiao Longfei 已提交
130

Q
QI JUN 已提交
131
    auto handle = dev_ctx.cudnn_handle();
Q
Qiao Longfei 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

    // Now, depending on whether we are running test or not, we have two paths.
    if (is_test) {
      // only when test we use input to do computation.
      const auto *est_mean = ctx.Input<Tensor>("Mean");
      const auto *est_var = ctx.Input<Tensor>("Variance");
      // Run inference mode.
      PADDLE_ENFORCE_EQ(est_mean->dims().size(), 1UL);
      PADDLE_ENFORCE_EQ(est_var->dims().size(), 1UL);
      PADDLE_ENFORCE_EQ(est_mean->dims()[0], C);
      PADDLE_ENFORCE_EQ(est_var->dims()[0], C);

      CUDNN_ENFORCE(platform::dynload::cudnnBatchNormalizationForwardInference(
          handle,
          // Note: PERSISTENT not implemented for inference
          CUDNN_BATCHNORM_SPATIAL, CudnnDataType<T>::kOne(),
          CudnnDataType<T>::kZero(), data_desc_, x->template data<T>(),
          data_desc_, y->template mutable_data<T>(ctx.GetPlace()),
          bn_param_desc_, scale->template data<T>(), bias->template data<T>(),
          est_mean->template data<T>(), est_var->template data<T>(), epsilon));
    } else {
      // Run training mode.
      // obtain running mean and running inv var, and see if we need to
      // initialize them.
      double this_factor = 1. - momentum;

      CUDNN_ENFORCE(platform::dynload::cudnnBatchNormalizationForwardTraining(
          handle, mode_, CudnnDataType<T>::kOne(), CudnnDataType<T>::kZero(),
          data_desc_, x->template data<T>(), data_desc_,
          y->template mutable_data<T>(ctx.GetPlace()), bn_param_desc_,
          scale->template data<T>(), bias->template data<T>(), this_factor,
          mean_out->template mutable_data<T>(ctx.GetPlace()),
          variance_out->template mutable_data<T>(ctx.GetPlace()), epsilon,
          saved_mean->template mutable_data<T>(ctx.GetPlace()),
          saved_variance->template mutable_data<T>(ctx.GetPlace())));
    }

    // clean when exit.
    CUDNN_ENFORCE(platform::dynload::cudnnDestroyTensorDescriptor(data_desc_));
    CUDNN_ENFORCE(
        platform::dynload::cudnnDestroyTensorDescriptor(bn_param_desc_));
  }
};

template <typename T>
Q
QI JUN 已提交
177
class BatchNormGradKernel<platform::CUDADeviceContext, T>
Q
Qiao Longfei 已提交
178 179 180 181 182 183
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                   "It must use GPUPlace.");
    double epsilon = static_cast<double>(ctx.Attr<float>("epsilon"));
Q
QI JUN 已提交
184 185 186
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
187 188 189 190 191 192
    const auto *x = ctx.Input<Tensor>("X");
    const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto *scale = ctx.Input<Tensor>("Scale");

    const auto &x_dims = x->dims();

193 194
    PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                   "The Input dim size should be between 2 and 5");
Q
Qiao Longfei 已提交
195
    int N, C, H, W, D;
Q
QI JUN 已提交
196
    ExtractNCWHD(x_dims, data_layout, &N, &C, &H, &W, &D);
Q
Qiao Longfei 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220

    PADDLE_ENFORCE_EQ(scale->dims().size(), 1UL);
    PADDLE_ENFORCE_EQ(scale->dims()[0], C);

    // ------------------- cudnn descriptors ---------------------
    cudnnTensorDescriptor_t data_desc_;
    cudnnTensorDescriptor_t bn_param_desc_;
    cudnnBatchNormMode_t mode_;

    CUDNN_ENFORCE(platform::dynload::cudnnCreateTensorDescriptor(&data_desc_));
    CUDNN_ENFORCE(
        platform::dynload::cudnnCreateTensorDescriptor(&bn_param_desc_));
    if (epsilon <= CUDNN_BN_MIN_EPSILON - FLT_EPSILON) {
      LOG(ERROR) << "Provided epsilon is smaller than "
                 << "CUDNN_BN_MIN_EPSILON. Setting it to "
                 << "CUDNN_BN_MIN_EPSILON instead.";
    }
    epsilon = std::max(epsilon, CUDNN_BN_MIN_EPSILON);
#if CUDNN_VERSION_MIN(7, 0, 0)
    mode_ = CUDNN_BATCHNORM_SPATIAL_PERSISTENT;
#else
    mode_ = CUDNN_BATCHNORM_SPATIAL;
#endif

Z
zchen0211 已提交
221 222
    std::vector<int> dims;
    std::vector<int> strides;
Q
QI JUN 已提交
223
    if (data_layout == DataLayout::kNCHW) {
Z
zchen0211 已提交
224 225 226 227 228 229
      dims = {N, C, H, W, D};
      strides = {C * H * W * D, H * W * D, W * D, D, 1};
    } else {
      dims = {N, C, H, W, D};
      strides = {H * W * C * D, 1, W * D * C, D * C, C};
    }
Q
Qiao Longfei 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
    CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
        data_desc_, CudnnDataType<T>::type,
        x_dims.size() > 3 ? x_dims.size() : 4, dims.data(), strides.data()));
    CUDNN_ENFORCE(platform::dynload::cudnnDeriveBNTensorDescriptor(
        bn_param_desc_, data_desc_, mode_));

    // init output
    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    d_x->mutable_data<T>(ctx.GetPlace());
    d_scale->mutable_data<T>(ctx.GetPlace());
    d_bias->mutable_data<T>(ctx.GetPlace());

    const auto *saved_mean = ctx.Input<Tensor>("SavedMean");
    const auto *saved_var = ctx.Input<Tensor>("SavedVariance");
    const void *saved_mean_data = saved_mean->template data<T>();
    const void *saved_var_data = saved_var->template data<T>();

Q
QI JUN 已提交
250
    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
Q
Qiao Longfei 已提交
251
    CUDNN_ENFORCE(platform::dynload::cudnnBatchNormalizationBackward(
Q
QI JUN 已提交
252 253 254 255
        dev_ctx.cudnn_handle(), mode_, CudnnDataType<T>::kOne(),
        CudnnDataType<T>::kZero(), CudnnDataType<T>::kOne(),
        CudnnDataType<T>::kZero(), data_desc_, x->template data<T>(),
        data_desc_, d_y->template data<T>(), data_desc_,
Q
Qiao Longfei 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
        d_x->template mutable_data<T>(ctx.GetPlace()), bn_param_desc_,
        scale->template data<T>(),
        d_scale->template mutable_data<T>(ctx.GetPlace()),
        d_bias->template mutable_data<T>(ctx.GetPlace()), epsilon,
        saved_mean_data, saved_var_data));

    // clean when exit.
    CUDNN_ENFORCE(platform::dynload::cudnnDestroyTensorDescriptor(data_desc_));
    CUDNN_ENFORCE(
        platform::dynload::cudnnDestroyTensorDescriptor(bn_param_desc_));
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Q
QI JUN 已提交
273 274 275 276
REGISTER_OP_CUDA_KERNEL(
    batch_norm,
    ops::BatchNormKernel<paddle::platform::CUDADeviceContext, float>);
REGISTER_OP_CUDA_KERNEL(
Q
Qiao Longfei 已提交
277
    batch_norm_grad,
Q
QI JUN 已提交
278
    ops::BatchNormGradKernel<paddle::platform::CUDADeviceContext, float>);