framework.py 253.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
H
huzhiqiang 已提交
19
from collections.abc import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27
from types import MethodType, FunctionType
28

Y
Yu Yang 已提交
29
import numpy as np
30
import subprocess
S
sneaxiy 已提交
31
import multiprocessing
32
import sys
33
import logging
M
minqiyang 已提交
34
from .. import compat as cpt
35
from .proto import framework_pb2
36 37

from . import core
38
from . import unique_name
39 40
import paddle.version as fluid_version
import warnings
41
import functools
42
from .variable_index import _getitem_impl_, _setitem_impl_
Y
Yu Yang 已提交
43

44
__all__ = [
45 46 47 48
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
49
    'name_scope',
J
jianghaicheng 已提交
50
    'ipu_shard_guard',
51
    'set_ipu_shard',
S
sneaxiy 已提交
52 53
    'cuda_places',
    'cpu_places',
54
    'xpu_places',
55
    'mlu_places',
S
sneaxiy 已提交
56
    'cuda_pinned_places',
J
Jiabin Yang 已提交
57
    '_non_static_mode',
L
lujun 已提交
58
    'in_dygraph_mode',
59
    'is_compiled_with_cinn',
C
chengduo 已提交
60
    'is_compiled_with_cuda',
61
    'is_compiled_with_rocm',
62
    'is_compiled_with_xpu',
63
    'is_compiled_with_npu',
64
    'Variable',
65
    'require_version',
66
    'device_guard',
G
guofei 已提交
67 68
    'set_flags',
    'get_flags',
69
]
Y
Yu Yang 已提交
70

Q
qiaolongfei 已提交
71 72 73 74
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
75 76
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
77
_dygraph_tracer_ = None
78
_in_eager_mode_ = (os.environ.get('FLAGS_enable_eager_mode', '1') == '1')
79
_global_expected_place_ = None
80
_current_device = None
81
global_prog_seed = 0
82
_current_pipeline_stage = None
83
_already_patch_eager_tensor = False
J
Jiabin Yang 已提交
84
_already_patch_varbase = False
85
_current_cuda_graph_mode = None
86
_global_flags_ = core.globals()
L
Leo Chen 已提交
87 88
_enable_standalone_executor_ = (os.environ.get('FLAGS_USE_STANDALONE_EXECUTOR',
                                               None))
J
Jiabin Yang 已提交
89 90

# Some explanation of our execution system 2022.03
91
# For now we have 3 kinds of execution system, since we refactored dygraph mode to
J
Jiabin Yang 已提交
92
# build a fast execution system for dynamic mode. But we can't just remove all legacy
93
# code once we present the new system for some historical reason. That's why we have
J
Jiabin Yang 已提交
94
# these flags.
95
#
J
Jiabin Yang 已提交
96
# 1. _non_static_mode():
97
# _non_static_mode means  we are now running in legacy dygraph mode or dygraph mode.
J
Jiabin Yang 已提交
98 99 100 101
# 2. dygraph_mode():
# This flags inidicates we are now running in dygraph mode which called eager mode before.
# 3. _in_legacy_dygraph():
# This flags inidicates we are now running in legacy dygraph mode
102
#
J
Jiabin Yang 已提交
103
# They have a relation ship as below:
104
# Both dygraph_mode and _in_legacy_dygraph are _non_static_mode, but if you are running in
J
Jiabin Yang 已提交
105
# dygraph mode means you are not in _in_legacy_dygraph.
106
#
J
Jiabin Yang 已提交
107 108 109 110 111 112
# Why we have to make different of _in_legacy_dygraph and dygraph_mode?
# In some performance issue, we find that python if statement cause server performance problem
# and we need our new dygraph mode becomes as fast as it could be. That's why we make these flags
# to make sure in most case, we find new dygraph mode first with only one if statement.


113 114 115 116 117 118 119 120 121
def _update_monkey_methods(is_eager):
    """
    Update monkey methods of VarBase or eager.Tensor while
    switching eager mode and legacy mode.
    """
    from paddle import _C_ops
    from .dygraph.varbase_patch_methods import monkey_patch_varbase
    from .dygraph import monkey_patch_math_varbase

122 123 124
    global _already_patch_eager_tensor
    global _already_patch_varbase

125
    assert isinstance(is_eager, bool)
126
    # switch into eager mode
127 128
    if is_eager:
        _C_ops.switch_to_eager_ops()
129 130 131 132 133 134
        if not _already_patch_eager_tensor:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_eager_tensor = True
    # switch back into legacy mode
135 136
    else:
        _C_ops.switch_to_core_ops()
137 138 139 140 141
        if not _already_patch_varbase:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_varbase = True
142

143 144 145 146 147 148 149 150 151 152 153
    # switch Paddle.Tensor bind type
    _switch_tensor_bind_type(is_eager)


def _switch_tensor_bind_type(is_eager):
    import paddle
    if is_eager:
        paddle.Tensor = core.eager.Tensor
    else:
        paddle.Tensor = core.VarBase
    paddle.Tensor.__qualname__ = 'Tensor'
154 155


J
Jiabin Yang 已提交
156 157 158
def _enable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = False
159
    _update_monkey_methods(is_eager=False)
J
Jiabin Yang 已提交
160 161 162 163 164


def _disable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = True
165
    _update_monkey_methods(is_eager=True)
J
Jiabin Yang 已提交
166 167 168 169 170 171 172


def _in_eager_without_dygraph_check():
    global _in_eager_mode_
    return _in_eager_mode_


173 174 175 176 177 178 179 180 181 182 183
# FIXME(dev): We haven't fully verified eager mode on XPU/NPU et.al but
# only GPU/CPU. Remove this after we improve this feature.
_is_first_import_ = True


def _fallback_legacy_dygraph():
    global _in_eager_mode_
    global _is_first_import_
    need_fallback = False
    # Only enable eager on CPU/GPU
    is_not_support = core.is_compiled_with_xpu() or core.is_compiled_with_npu(
J
Jiabin Yang 已提交
184
    ) or core.is_compiled_with_ipu() or core.is_compiled_with_mlu()
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205

    if _in_eager_mode_ and is_not_support:
        # switch into legacy dygraph mode
        warnings.warn(
            "We will fallback into legacy dygraph on NPU/XPU/MLU/IPU/ROCM devices. Because we only support new eager dygraph mode on CPU/GPU currently. "
        )
        _in_eager_mode_ = False
        if not _is_first_import_:
            _enable_legacy_dygraph()
        need_fallback = True

    need_fallback = False
    _is_first_import_ = False

    return need_fallback


# switch into legacy mode if need while import paddle
_fallback_legacy_dygraph()


J
Jiabin Yang 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
def in_dygraph_mode():
    """

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .

    Returns:
        bool: Whether paddle runs in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode

    """
    return (_dygraph_tracer_ is not None) and _in_eager_mode_


def _in_legacy_dygraph():
    return (not _in_eager_mode_) and (_dygraph_tracer_ is not None)


def _non_static_mode():
    return _dygraph_tracer_ is not None
242 243 244


@signature_safe_contextmanager
J
Jiabin Yang 已提交
245
def _test_eager_guard(place=None):
246 247 248 249 250
    # FIXME(dev): We haven't fully verified eager mode on XPU/NPU et.al but
    # only GPU/CPU. Remove this after we improve this feature.
    already_fallback = _fallback_legacy_dygraph()
    if not already_fallback:
        _disable_legacy_dygraph()
251
    try:
J
Jiabin Yang 已提交
252
        yield
253
    finally:
254 255
        if not already_fallback:
            _enable_legacy_dygraph()
256 257


258 259
global_ipu_index = -1
global_ipu_stage = -1
J
jianghaicheng 已提交
260 261 262 263
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


L
Leo Chen 已提交
264 265 266 267 268 269 270 271 272 273 274
@signature_safe_contextmanager
def _enable_standalone_executor(enable=True):
    global _enable_standalone_executor_
    original_ = _enable_standalone_executor_
    _enable_standalone_executor_ = enable
    try:
        yield
    finally:
        _enable_standalone_executor_ = original_


J
jianghaicheng 已提交
275
@signature_safe_contextmanager
276
def ipu_shard_guard(index=-1, stage=-1):
J
jianghaicheng 已提交
277 278 279 280
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
W
Weilong Wu 已提交
281
        index(int, optional): Specify which ipu the Tensor is computed on, (such as '0, 1, 2, 3').
282
            The default value is -1, which means the Op only run on IPU 0.
W
Weilong Wu 已提交
283
        stage(int, optional): Specify the computation order of the sharded model(such as '0, 1, 2, 3').
284
            The sharded model will be computed from small to large. The default value is -1, 
J
jianghaicheng 已提交
285 286 287
            which means no pipelining computation order and run Ops in terms of graph.
    
    **Note**:
288
    Only if the enable_manual_shard=True, the 'index' is able to be set not -1. Please refer 
J
jianghaicheng 已提交
289
    to :code:`paddle.static.IpuStrategy` . 
290
    Only if the enable_pipelining=True, the 'stage' is able to be set not -1. Please refer 
J
jianghaicheng 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
    to :code:`paddle.static.IpuStrategy` .
    A index is allowed to match none stage or a stage. A stage is only allowed to match a new or 
    duplicated index.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
def set_ipu_shard(call_func, index=-1, stage=-1):
    """
    Shard the ipu with the given call function. Set every ops in call function to the given ipu sharding.

    Args:
        call_func(Layer|function): Specify the call function to be wrapped.
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is -1, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
            The sharded model will be computed from small to large. The default value is -1, 
            which means no pipelining computation order and run Ops in terms of graph.

    Returns:
        The wrapped call function.


    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='float32')
            relu = paddle.nn.ReLU()
            relu = paddle.static.set_ipu_shard(relu, index=1, stage=1)
            relu(a)
    """

    def decorate(func):

        def wrapper(*args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return func(*args, **kwargs)

        return wrapper

    from .dygraph.layers import Layer
    if not isinstance(call_func, Layer):
        if callable(call_func):
            return decorate(call_func)
        else:
            raise TypeError(
                "Unsupported type. Only accept paddle.nn.Layer or function.")

    # patch paddle.nn.Layer
    class BlockFn(type(call_func)):

        def __call__(self, *args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return super().__call__(*args, **kwargs)

    BlockFn.__name__ = type(call_func).__name__
    call_func.__class__ = BlockFn
    return call_func


385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
470 471
    min_version_to_check = min_version_split + zero_version[
        len(min_version_split):]
472 473 474

    if max_version is not None:
        max_version_split = max_version.split('.')
475 476
        max_version_to_check = max_version_split + zero_version[
            len(max_version_split):]
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


492
def _dygraph_not_support_(func):
493

494
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
495 496
        assert not _non_static_mode(
        ), "We don't support %s in dynamic graph mode" % func.__name__
497 498 499 500 501 502
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
503

504
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
505
        assert _non_static_mode(
506 507 508 509 510 511 512
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
513

514
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
515
        assert not _non_static_mode(
516
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
517 518 519 520 521
        return func(*args, **kwargs)

    return __impl__


522 523 524 525 526
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


527 528 529 530 531 532
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
533
# same base class.
534
def _fake_interface_only_(func):
535

536 537
    def __impl__(*args, **kwargs):
        raise AssertionError(
538 539 540 541 542
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
            % (func.__name__, func.__name__))
543 544 545 546

    return __impl__


T
tangwei12 已提交
547 548
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
549 550 551 552
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
553

554 555 556 557 558 559 560 561 562 563 564 565 566
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


567 568
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
569
static_only = wrap_decorator(_static_only_)
570
fake_interface_only = wrap_decorator(_fake_interface_only_)
571 572


L
lujun 已提交
573 574
def _dygraph_tracer():
    return _dygraph_tracer_
575

W
Wu Yi 已提交
576

577 578 579 580
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
581
def _current_expected_place():
582 583 584
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
585 586 587 588 589
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
590
                _global_expected_place_ = core.CUDAPlace(_cuda_ids()[0])
591 592 593 594 595
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
596 597 598 599 600 601
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
602
                _global_expected_place_ = core.XPUPlace(_xpu_ids()[0])
603 604 605 606 607
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
608 609 610 611 612 613
        elif core.is_compiled_with_mlu():
            try:
                device_count = core.get_mlu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
614
                _global_expected_place_ = core.MLUPlace(_mlu_ids()[0])
615 616 617 618 619
            else:
                warnings.warn(
                    "You are using MLU version Paddle, but your MLU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
635
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
636 637


L
Leo Chen 已提交
638 639 640 641
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
T
tangwei12 已提交
642

L
Leo Chen 已提交
643 644 645 646 647 648 649 650 651 652 653 654
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
655
def _cpu_num():
656
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
657 658 659 660 661 662 663 664
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
665
        os.environ['CPU_NUM'] = str(1)
666
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
667 668 669 670 671 672 673 674 675 676
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
677 678


679 680 681 682 683 684 685 686 687
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


688 689 690 691 692 693 694 695 696
def _npu_ids():
    npus_env = os.getenv("FLAGS_selected_npus")
    if npus_env:
        device_ids = [int(s) for s in npus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_npu_device_count())
    return device_ids


697 698 699 700 701 702 703 704 705
def _mlu_ids():
    mlus_env = os.getenv("FLAGS_selected_mlus")
    if mlus_env:
        device_ids = [int(s) for s in mlus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_mlu_device_count())
    return device_ids


706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
def is_compiled_with_npu():
    """
    Whether this whl package can be used to run the model on NPU.

    Returns (bool): support npu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_npu = fluid.is_compiled_with_npu()
    """
    return core.is_compiled_with_npu()


736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
    
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

    Returns: None 

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

    Returns (bool): `True` if CINN is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
776 777 778 779
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

780
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
781 782 783 784

    Examples:
        .. code-block:: python

785
            import paddle
786
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
787 788 789 790
    """
    return core.is_compiled_with_cuda()


791 792 793 794 795 796 797 798 799 800
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
801
            support_gpu = paddle.device.is_compiled_with_rocm()
802 803 804 805
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
806
def cuda_places(device_ids=None):
L
lujun 已提交
807
    """
808
    Note:
809 810 811
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
812
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
813 814

    If :code:`device_ids` is None, environment variable of
815
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
816
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
817
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
818
    If :code:`FLAGS_selected_gpus` is not set, all visible
819
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
820 821

    If :code:`device_ids` is not None, it should be the device
822
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
823
    the returned list would be 
C
Chen Weihang 已提交
824
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
825

826
    Parameters:
827
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
828 829

    Returns:
C
Chen Weihang 已提交
830
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
831 832

    Examples:
833
    
L
lujun 已提交
834 835
        .. code-block:: python

C
Chen Weihang 已提交
836 837
            import paddle
            import paddle.static as static
T
tangwei12 已提交
838

839 840
            # required: gpu
            
C
Chen Weihang 已提交
841 842 843
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
844 845

    """
S
sneaxiy 已提交
846 847 848
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
849
        device_ids = _cuda_ids()
S
sneaxiy 已提交
850 851 852 853 854
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


855 856 857 858
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
859 860 861 862 863 864 865 866 867 868 869
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be 
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
870 871 872 873 874 875 876
    
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
877

878 879
            # required: xpu

880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
def npu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_npus` environment variable to set the visible NPU device.
    
    This function creates a list of :code:`paddle.NPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_npus` would be checked first. For example, if
    :code:`FLAGS_selected_npus=0,1,2`, the returned list would
    be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    If :code:`FLAGS_selected_npus` is not set, all visible
    npu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of NPUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be 
    [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    
    Parameters:
        device_ids (list or tuple of int, optional): list of NPU device ids.
    Returns:
        list of paddle.NPUPlace: Created NPU place list.
    Examples:
        .. code-block:: python

            # required: npu

            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            npu_places = static.npu_places()
    """
    assert core.is_compiled_with_npu(), \
        "Not compiled with NPU"
    if device_ids is None:
        device_ids = _npu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.NPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
936
def cpu_places(device_count=None):
L
lujun 已提交
937
    """
C
Chen Weihang 已提交
938
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
939

S
add doc  
sneaxiy 已提交
940 941
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
942 943
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
944 945
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
946

947 948
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
949 950

    Returns:
C
Chen Weihang 已提交
951
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
952 953

    Examples:
954
    
L
lujun 已提交
955 956
        .. code-block:: python

C
Chen Weihang 已提交
957 958
            import paddle
            import paddle.static as static
T
tangwei12 已提交
959

C
Chen Weihang 已提交
960 961 962
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
963 964
    """

S
sneaxiy 已提交
965 966 967 968 969 970
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
971
    """
972
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
973 974 975

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
976 977 978 979
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
980

981 982
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
983 984

    Returns:
985
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
986 987 988 989

    Examples:
        .. code-block:: python

990
            import paddle.fluid as fluid
L
lujun 已提交
991 992 993 994 995
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
996 997 998
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
999 1000
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
1001 1002


1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
def mlu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_mlus` environment variable to set the visible MLU device.
        This function creates a list of :code:`paddle.device.MLUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_mlus` would be checked first. For example, if
        :code:`FLAGS_selected_mlus=0,1,2`, the returned list would
        be [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].
        If :code:`FLAGS_selected_mlus` is not set, all visible
        mlu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of MLUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be
        [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].

    Parameters:
        device_ids (list or tuple of int, optional): list of MLU device ids.

    Returns:
        list of paddle.device.MLUPlace: Created MLU place list.

    Examples:
        .. code-block:: python

            # required: mlu

            import paddle
            import paddle.static as static

            paddle.enable_static()
            mlu_places = static.mlu_places()
    """
    assert core.is_compiled_with_mlu(), \
        "Not compiled with MLU"
    if device_ids is None:
        device_ids = _mlu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.MLUPlace(dev_id) for dev_id in device_ids]


1045
class NameScope(object):
1046

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
1072
@signature_safe_contextmanager
1073 1074
def name_scope(prefix=None):
    """
1075

1076
    Generate hierarchical name prefix for the operators in Static Graph.
1077

T
Tao Luo 已提交
1078 1079 1080
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
1081
        Don't use it in dygraph, since it will cause memory leak.
1082 1083

    Args:
T
Tao Luo 已提交
1084
        prefix(str, optional): prefix. Default is none.
1085 1086

    Examples:
1087
    
1088
        .. code-block:: python
T
Tink_Y 已提交
1089

1090 1091 1092
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
1093
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
1094
             b = a + 1
1095
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
1096
                c = b * 1
1097
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
1098
                d = c / 1
1099 1100 1101
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
1102 1103 1104
                g = f - 1

          # Op are created in the default main program.  
1105
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
1121 1122
    """
    # TODO(panyx0718): Only [0-9a-z].
1123
    # in dygraph we don't need namescope since it will cause mem leak
J
Jiabin Yang 已提交
1124
    if _non_static_mode():
L
Leo Chen 已提交
1125 1126
        yield
    else:
T
tianshuo78520a 已提交
1127
        assert prefix, "namescope prefix can not be empty."
1128 1129
        global _name_scope
        _name_scope = _name_scope.child(prefix)
1130 1131 1132 1133
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
1146 1147 1148
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
1149 1150 1151 1152


def grad_var_name(var_name):
    """
1153 1154
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
1155 1156 1157
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
1158

1159
def convert_np_dtype_to_dtype_(np_dtype):
1160 1161
    """
    Convert the data type in numpy to the data type in Paddle
1162

1163
    Args:
1164
        np_dtype(np.dtype): the data type in numpy.
1165

1166 1167
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
1168 1169

    """
1170 1171
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
1172
        return core.VarDesc.VarType.FP32
1173
    elif dtype == np.float64:
1174
        return core.VarDesc.VarType.FP64
1175
    elif dtype == np.float16:
1176
        return core.VarDesc.VarType.FP16
1177
    elif dtype == np.int32:
1178
        return core.VarDesc.VarType.INT32
1179
    elif dtype == np.int16:
1180
        return core.VarDesc.VarType.INT16
1181
    elif dtype == np.int64:
1182
        return core.VarDesc.VarType.INT64
1183
    elif dtype == np.bool_:
1184
        return core.VarDesc.VarType.BOOL
1185
    elif dtype == np.uint16:
1186 1187 1188
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
1189 1190
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
1191 1192
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
1193 1194 1195 1196
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
1197
    else:
M
minqiyang 已提交
1198
        raise ValueError("Not supported numpy dtype %s" % dtype)
1199 1200 1201


def dtype_is_floating(dtype):
1202 1203 1204
    """
    Check the data type is floating or not.
    Args:
1205
        dtype(np.dtype|core.VarDesc.VarType): data type.
1206 1207 1208 1209 1210
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1211
    if not isinstance(dtype, core.VarDesc.VarType):
1212 1213
        dtype = convert_np_dtype_to_dtype_(dtype)

1214 1215 1216 1217
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
1218 1219


Y
Yang Yang(Tony) 已提交
1220
def _debug_string_(proto, throw_on_error=True):
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1232
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1233
    if not proto.IsInitialized(error_fields) and throw_on_error:
1234 1235 1236
        raise ValueError(
            "{0} are not initialized.\nThe message is {1}:\n".format(
                error_fields, proto))
Y
Yu Yang 已提交
1237 1238 1239
    return proto.__str__()


1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

J
Jiabin Yang 已提交
1250
    if _in_eager_mode_:
1251
        eager_tensor = core.eager.Tensor(
1252
            dtype if dtype else core.VarDesc.VarType.FP32,
1253 1254 1255
            list(shape) if shape else [], name,
            type if type else core.VarDesc.VarType.LOD_TENSOR,
            True if persistable else False)
1256 1257
        eager_tensor.retain_grads()
        return eager_tensor
J
Jiabin Yang 已提交
1258 1259
    else:
        return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
1260 1261 1262
                            list(shape) if shape else [], name,
                            type if type else core.VarDesc.VarType.LOD_TENSOR,
                            True if persistable else False)
1263 1264 1265


class VariableMetaClass(type):
1266

1267 1268 1269 1270
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1271
            return issubclass(t, core.eager.Tensor)
1272
        else:
J
Jiabin Yang 已提交
1273 1274
            if _in_legacy_dygraph():
                return issubclass(t, core.VarBase)
1275 1276 1277 1278
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
1279

1280 1281 1282 1283
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1284
            return issubclass(t, EagerParamBase)
1285
        else:
J
Jiabin Yang 已提交
1286 1287
            if _in_legacy_dygraph():
                return issubclass(t, ParamBase)
1288 1289 1290 1291
            return issubclass(t, Parameter)


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
1292
class Variable(object):
1293
    """
J
Jiabin Yang 已提交
1294
    **Notes**:
1295
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
1296

1297 1298
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
1299 1300 1301
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
1302
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1303 1304
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1305

1306
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1307
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1308

T
tianshuo78520a 已提交
1309
    Most of a Variable's member variables can be set to be None. It mean
1310
    it is not available or will be specified later.
1311

1312
    Examples:
1313 1314
        In Static Graph Mode:

1315 1316
        .. code-block:: python

1317
            import paddle.fluid as fluid
1318
            cur_program = fluid.Program()
1319 1320 1321 1322
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1323

J
Jiabin Yang 已提交
1324
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
1325 1326 1327 1328 1329 1330 1331 1332 1333

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1334 1335
    """

Y
Yu Yang 已提交
1336 1337
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1338
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
1339 1340 1341 1342
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
1343
                 capacity=None,
Q
QI JUN 已提交
1344
                 persistable=None,
F
fengjiayi 已提交
1345
                 error_clip=None,
Y
Yu Yang 已提交
1346
                 stop_gradient=False,
F
fengjiayi 已提交
1347
                 is_data=False,
H
Huihuang Zheng 已提交
1348
                 need_check_feed=False,
H
hong 已提交
1349
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
1350
                 **kwargs):
Y
Yu Yang 已提交
1351 1352
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1353
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1354

Y
Yu Yang 已提交
1355
        if dtype is not None:
1356
            if not isinstance(dtype, core.VarDesc.VarType):
1357
                dtype = convert_np_dtype_to_dtype_(dtype)
1358

S
Steffy-zxf 已提交
1359 1360 1361 1362
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

H
hong 已提交
1363 1364
        self.belong_to_optimizer = belong_to_optimizer

1365 1366 1367 1368 1369
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
1370

1371 1372 1373
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
1374

1375 1376 1377
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
L
Leo Chen 已提交
1378 1379
            raise ValueError("Variable '{0}' has been created before. The "
                             "previous type is {1}, the new type is {2}. They"
1380 1381
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
1382

1383
        if shape is not None:
1384
            if is_new_var:
1385 1386 1387 1388 1389 1390
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1391 1392
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1393 1394 1395 1396 1397 1398 1399
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
L
Leo Chen 已提交
1400 1401
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous data type is {1}, the new "
1402 1403 1404 1405 1406 1407 1408 1409 1410
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
L
Leo Chen 已提交
1411 1412
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous lod_level is {1}, the new "
1413 1414 1415 1416 1417 1418 1419 1420 1421
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1422 1423
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1424 1425
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1426

1427 1428
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1429

1430 1431 1432 1433 1434 1435 1436
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1437

1438 1439
        self.block.vars[name] = self
        self.op = None
1440
        self.stop_gradient = stop_gradient
1441
        self.is_data = is_data
Y
Yu Yang 已提交
1442

1443 1444 1445
    def detach(self):
        """
        Returns a new Variable, detached from the current graph.
1446 1447
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1448

1449
        Returns:
J
Jiabin Yang 已提交
1450
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1451 1452 1453 1454

        Examples:
            .. code-block:: python

1455
                import paddle
1456

1457 1458 1459 1460
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1461

1462 1463
                # create a detached Variable
                y = x.detach()
1464
        """
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476

        assert self.type == core.VarDesc.VarType.SELECTED_ROWS or \
            self.type == core.VarDesc.VarType.LOD_TENSOR, \
            "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=True)

1477 1478 1479
        self.block.append_op(type='share_data',
                             inputs={'X': [self]},
                             outputs={'Out': [output]})
1480
        return output
1481

1482
    @fake_interface_only
1483
    def numpy(self):
1484
        """
J
Jiabin Yang 已提交
1485
        **Notes**:
T
tianshuo78520a 已提交
1486
            **This API is ONLY available in Dygraph mode**
1487

J
Jiabin Yang 已提交
1488
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1489 1490 1491 1492 1493

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1494
            ndarray: dtype is same as current Variable
1495 1496 1497 1498 1499 1500

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1501
                from paddle.fluid.dygraph import Linear
1502 1503 1504 1505
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1506
                    linear = Linear(32, 64)
1507
                    data = to_variable(data)
1508
                    x = linear(data)
1509 1510 1511
                    print(x.numpy())

        """
1512
        pass
1513

1514
    @fake_interface_only
1515
    def backward(self, retain_graph=False):
1516
        """
J
Jiabin Yang 已提交
1517
        **Notes**:
T
tianshuo78520a 已提交
1518
            **This API is ONLY available in Dygraph mode**
1519

1520
        Run backward of current Graph which starts from current Tensor.
1521

J
Jiabin Yang 已提交
1522
        Args:
1523 1524 1525 1526
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1527

J
Jiabin Yang 已提交
1528 1529
        Returns:
            NoneType: None
1530 1531 1532 1533 1534

        Examples:
            .. code-block:: python

                import numpy as np
1535 1536
                import paddle
                paddle.disable_static()
1537 1538

                x = np.ones([2, 2], np.float32)
1539 1540 1541 1542 1543 1544 1545
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1546 1547
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1548
                loss.backward()
1549 1550

        """
1551
        pass
1552

1553
    @fake_interface_only
1554
    def gradient(self):
1555
        """
J
Jiabin Yang 已提交
1556
        **Notes**:
T
tianshuo78520a 已提交
1557
            **This API is ONLY available in Dygraph mode**
1558 1559 1560

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1561
        Returns:
1562
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1563 1564 1565 1566 1567 1568 1569

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1570
                # example1: return ndarray
1571 1572 1573 1574 1575 1576 1577 1578 1579
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1580
                    loss2.backward()
1581 1582
                    print(loss2.gradient())

1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1596
        """
1597
        pass
1598

1599
    @fake_interface_only
1600
    def clear_gradient(self):
1601
        """
J
Jiabin Yang 已提交
1602
        **Notes**:
T
tianshuo78520a 已提交
1603
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1604 1605

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1606

J
Jiabin Yang 已提交
1607
        Clear  (set to ``0`` ) the Gradient of Current Variable
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1626
                    loss2.backward()
1627 1628 1629 1630 1631
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1632
        pass
X
Xin Pan 已提交
1633

1634 1635 1636 1637
    @fake_interface_only
    def register_hook(self, hook):
        pass

1638
    def __str__(self):
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1655 1656
                import paddle
                import paddle.static as static
1657

1658 1659 1660
                paddle.enable_static()

                cur_program = static.Program()
1661 1662 1663 1664 1665 1666
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1667 1668
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1669
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1670 1671
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
T
tangwei12 已提交
1672 1673
                format(name=self.name, type=type_str, shape=self.shape,
                       dtype=dtype_str, stop_gradient=self.stop_gradient)
1674
        else:
1675 1676
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1677

1678
        if self.is_parameter:
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1689
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
1690
        dist_context = get_default_distributed_context()
1691 1692
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1693 1694
            var_str += ", {name} = {value}".format(name="dist_attr",
                                                   value=dist_tensor)
1695

1696
        return var_str
Y
Yang Yang(Tony) 已提交
1697

F
update  
fengjiayi 已提交
1698
    def to_string(self, throw_on_error, with_details=False):
1699 1700 1701
        """
        Get debug string.

J
Jiabin Yang 已提交
1702 1703 1704 1705 1706
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1707

1708 1709
        Returns:
            str: The debug string.
1710 1711 1712 1713 1714

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1715
                import paddle
1716

1717
                paddle.enable_static()
1718 1719 1720 1721 1722
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1723
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1724
                print("=============with detail===============")
1725
                print(new_variable.to_string(True, True))
1726
        """
1727 1728
        assert isinstance(throw_on_error, bool) and isinstance(
            with_details, bool)
1729
        protostr = self.desc.serialize_to_string()
1730
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1731 1732
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1733
            additional_attr = ("error_clip", )
F
update  
fengjiayi 已提交
1734
            for attr_name in additional_attr:
1735 1736 1737
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1738
        return res_str
1739 1740 1741

    __repr__ = __str__

1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
        
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1769
    @property
1770
    def stop_gradient(self):
J
Jiabin Yang 已提交
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1786 1787
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1788 1789 1790
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1791 1792
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1793 1794 1795 1796
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1797
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1798 1799
                assert (out1.gradient() == 0).all()
        """
1800
        return self.desc.stop_gradient()
1801

1802 1803
    @stop_gradient.setter
    def stop_gradient(self, s):
1804
        self.desc.set_stop_gradient(s)
1805

1806 1807
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1829
        return self.desc.persistable()
1830

Y
Yu Yang 已提交
1831 1832
    @persistable.setter
    def persistable(self, p):
1833
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1834

1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1860 1861
    @property
    def name(self):
J
Jiabin Yang 已提交
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1878
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1879

1880 1881 1882 1883 1884 1885
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1886 1887
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1888

1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1900 1901
    @name.setter
    def name(self, new_name):
1902
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1903

Y
Yu Yang 已提交
1904 1905
    @property
    def shape(self):
J
Jiabin Yang 已提交
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1923
        # convert to tuple, make it as same as numpy API.
1924
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1925 1926

    @property
F
fengjiayi 已提交
1927
    def dtype(self):
J
Jiabin Yang 已提交
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1944
        return self.desc.dtype()
Y
Yu Yang 已提交
1945 1946 1947

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

1961
            import paddle
J
Jiabin Yang 已提交
1962
            import paddle.fluid as fluid
1963 1964

            paddle.enable_static()
J
Jiabin Yang 已提交
1965 1966 1967 1968 1969 1970 1971
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1972 1973
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
1974 1975
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
1976
        return self.desc.lod_level()
Y
Yu Yang 已提交
1977

Y
Yu Yang 已提交
1978 1979
    @property
    def type(self):
J
Jiabin Yang 已提交
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1996
        return self.desc.type()
Y
Yu Yang 已提交
1997

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
    @property
    def T(self):
        """
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
            stop_gradient=False)
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=False)

2039 2040 2041 2042 2043 2044 2045
        self.block.append_op(type='transpose2',
                             inputs={'X': [self]},
                             outputs={
                                 'Out': [out],
                                 'XShape': [input_shape]
                             },
                             attrs={'axis': perm})
2046 2047
        return out

2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
        Variable. It remains in the current graph, that is, the cloned Variable 
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=self.stop_gradient)

2078 2079 2080
        self.block.append_op(type='assign',
                             inputs={'X': [self]},
                             outputs={'Out': [output]})
2081 2082
        return output

W
Wu Yi 已提交
2083
    def _set_error_clip(self, error_clip):
2084 2085 2086 2087 2088 2089 2090 2091 2092
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
2093 2094
        self.error_clip = error_clip

2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
2135
            raise ValueError("slice step can not be zero")
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
2146 2147
            start = max(start +
                        length, lower) if start < 0 else min(start, upper)
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2211
    def _cloneVar(self, copy=False):
2212 2213
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2214 2215
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
2216 2217 2218 2219
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2220
        new_var = self._cloneVar()
2221 2222 2223 2224 2225 2226 2227 2228
        self.block.append_op(type="slice",
                             inputs={'Input': [self]},
                             outputs={'Out': [new_var]},
                             attrs={
                                 'axes': axes,
                                 'starts': starts,
                                 'ends': ends
                             })
2229 2230 2231
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2232
        new_var = self._cloneVar()
2233 2234 2235 2236 2237 2238
        self.block.append_op(type="concat",
                             inputs={'X': inputs},
                             outputs={'Out': [new_var]},
                             attrs={
                                 'axis': axis,
                             })
2239 2240 2241 2242 2243
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2244
                return self._cloneVar(True)
2245 2246 2247 2248 2249 2250 2251
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
2252 2253
                        vars.append(self._sliceVar([axis], [start],
                                                   [start + 1]))
2254 2255 2256
                        start += step
                else:
                    while start > stop:
2257 2258
                        vars.append(self._sliceVar([axis], [start],
                                                   [start + 1]))
2259 2260 2261 2262
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2263
                return self._cloneVar(True)
2264
            index = int(item)
2265
            if (index > 0 and index >= self.shape[axis]) \
2266 2267 2268 2269 2270 2271 2272
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2273
        return _getitem_impl_(self, item)
2274

2275
    def __setitem__(self, item, value):
2276
        return _setitem_impl_(self, item, value)
2277

2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
    def get_value(self, scope=None):
        """
        Get the value of variable in given scope. 

        Args:
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            Tensor: the value in given scope.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
2319 2320
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file.
2321 2322 2323 2324
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2325 2326
                "`scope` should be None or `paddle.static.Scope` type, but received {}."
                .format(type(scope)))
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
        Set the value to the tensor in given scope. 

        Args:
            value(Tensor/ndarray) : The value to be set.
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        '''

        # The 'framework' is a low-level module, and 'executor'
2381
        # can not be imported at the begainning of this file.
2382 2383 2384 2385 2386
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
2387 2388
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}."
                .format(type(value)))
2389 2390 2391

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2392 2393
                "`scope` should be None or `paddle.static.Scope` type, but received {}."
                .format(type(scope)))
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
                    "{} expected a shape {}, but the received shape is {}.".
                    format(self.name, list(t.shape()), list(value_shape)))

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2424 2425 2426 2427
        elif p.is_npu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.NPUPlace(p.npu_device_id())
2428 2429 2430 2431
        elif p.is_mlu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.MLUPlace(p.mlu_device_id())
2432 2433 2434 2435 2436 2437 2438
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
    def size(self):
        """
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
            Variable: the number of elements for current Variable

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
            dtype=core.VarDesc.VarType.INT64)

2464 2465 2466
        self.block.append_op(type='size',
                             inputs={'Input': [self]},
                             outputs={'Out': [output]})
2467 2468
        return output

2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
    def _set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
            bool: True if has this attribute.
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

    def _get_attr(self, name):
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
            int|str|list: The attribute value. The return value
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Variable.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        from paddle.distributed.auto_parallel.interface import ProcessMesh
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.desc.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    @property
    def shard_mask(self):
        """
        Get shard_mask belonging to this Variable.
        """
        mask_attr_name = 'mask' + core.kAutoParallelSuffix()
        return self.desc.attr(mask_attr_name)

    @property
    def offload_device(self):
        """
        Get the offload device of this Variable.
        """
        offload_attr_name = 'offload_device' + core.kAutoParallelSuffix()
        return self.desc.attr(offload_attr_name)

Y
Yu Yang 已提交
2549

F
fengjiayi 已提交
2550 2551 2552
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2553

2554 2555
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2556 2557 2558 2559
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2560
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
2561 2562 2563 2564 2565
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
2566 2567 2568 2569
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2570 2571 2572 2573 2574 2575 2576 2577 2578
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
2579
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2580 2581 2582 2583 2584 2585
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2586 2587 2588 2589 2590 2591 2592 2593
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2594 2595
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2596 2597
        return self.op_proto_map[type]

2598 2599
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2600
        custom_op_names = []
2601 2602 2603
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2604 2605 2606
                custom_op_names.append(proto.type)

        return custom_op_names
2607

2608 2609 2610 2611
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2612
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2613
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2614 2615
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
2616 2617
        }

F
fengjiayi 已提交
2618

X
Xin Pan 已提交
2619
class Operator(object):
2620
    """
2621 2622 2623 2624 2625 2626 2627
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2628
        type(str): The type of operator. Default None.
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2649
        Block.append_op or Block._prepend_op instead.
2650 2651 2652 2653

    Examples:
        .. code-block:: python

2654
            import paddle.fluid as fluid
2655
            cur_program = fluid.Program()
2656 2657 2658 2659 2660
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2661
    """
2662
    OP_WITHOUT_KERNEL_SET = {
2663 2664
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
2665
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
2666 2667
        'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id',
        'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream',
W
WangXi 已提交
2668
        'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv',
B
Baibaifan 已提交
2669
        'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl',
2670
        'copy_cross_scope', 'c_gen_cncl_id'
2671
    }
2672

Y
Yu Yang 已提交
2673 2674
    def __init__(self,
                 block,
Y
Yu Yang 已提交
2675
                 desc,
Y
Yu Yang 已提交
2676 2677 2678
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
2679
                 attrs=None):
J
Jiabin Yang 已提交
2680
        if _non_static_mode():
2681 2682
            if type is None:
                raise ValueError(
2683
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
2684
            self._type = type
M
minqiyang 已提交
2685
            self.attrs = attrs if attrs else {}
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

2696 2697 2698
            # attr for static mode cuda graph
            self._cuda_graph_attr = _current_cuda_graph_mode

2699 2700 2701
            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
2702 2703
                op_attrs[
                    op_maker.kOpRoleAttrName()] = self.block.program._op_role
2704 2705

            role_var_name = op_maker.kOpRoleVarAttrName()
2706 2707
            if len(self.block.program._op_role_var
                   ) != 0 and role_var_name not in op_attrs:
2708
                op_attrs[role_var_name] = self.block.program._op_role_var
2709 2710 2711 2712 2713

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2714 2715 2716 2717 2718
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2719 2720 2721
                return
            if type is None:
                raise ValueError(
2722
                    "`type` to initialized an Operator can not be None.")
2723 2724
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2725 2726 2727
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
2728 2729 2730 2731
                        '  File "{}", line {}, in {}'.format(
                            frame[0], frame[1], frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(
                        frame[3]))
2732 2733 2734 2735 2736 2737 2738

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
2750
                    if (type == 'less_than' and op_attrs['force_cpu'] != None
2751 2752 2753 2754 2755
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)
2756 2757 2758 2759 2760
            if _current_pipeline_stage is not None:
                pipeline_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix(
                )
                self._update_desc_attr(pipeline_attr_name,
                                       _current_pipeline_stage)
2761

2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2775
                        if not isinstance(in_args, (list, tuple)):
2776 2777 2778 2779 2780 2781
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2782
                        for index, arg in enumerate(in_args):
2783 2784 2785 2786
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2787
                            elif isinstance(arg, (Variable, core.VarBase)):
2788
                                in_arg_names.append(cpt.to_text(arg.name))
2789
                            else:
2790 2791 2792 2793
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2794 2795
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2796 2797 2798 2799 2800 2801 2802 2803 2804
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
2805 2806 2807 2808
                        raise ValueError(
                            ("Incorrect setting for output(s) of "
                             "operator \"%s\", should set: [%s].") %
                            (type, m.name))
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2821 2822 2823 2824
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2825
                        # TODO(minqiyang): could we remove variable's op in static mode?
J
Jiabin Yang 已提交
2826
                        if not _non_static_mode():
2827 2828 2829 2830
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2831 2832 2833 2834 2835 2836 2837
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
2838 2839
                    if (attr_name
                            not in op_attrs) or (op_attrs[attr_name] is None):
2840 2841 2842 2843
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

J
jianghaicheng 已提交
2844 2845
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
2846
                if global_ipu_index >= 0:
J
jianghaicheng 已提交
2847 2848
                    self._update_desc_attr(ipu_index_attr_name,
                                           global_ipu_index)
2849
                if global_ipu_stage >= 0:
J
jianghaicheng 已提交
2850 2851 2852
                    self._update_desc_attr(ipu_stage_attr_name,
                                           global_ipu_stage)

2853 2854 2855 2856 2857
            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2858
    def _has_kernel(self, op_type):
2859 2860
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2861
    def to_string(self, throw_on_error):
2862
        """
2863 2864
        Get debug string.

2865
        Args:
2866 2867
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2868

2869 2870
        Returns:
            str: The debug string.
2871 2872

        """
2873
        protostr = self.desc.serialize_to_string()
2874
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2875 2876
        return _debug_string_(proto, throw_on_error)

2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2909
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

2956
            # it is bytes of serialized protobuf
2957 2958 2959 2960
            if is_compiled_with_cinn(
            ) and self.type == 'cinn_launch' and name == 'compilation_key':
                key = self.desc.attr(name)
                v = core.get_serialize_comile_key(key)
2961 2962 2963 2964 2965 2966 2967 2968 2969
                prog = Program()
                prog = prog.parse_from_string(v)
                s = prog._to_readable_code()
                lines = s.split('\n')
                value = '\n'.join(['      ' + line for line in lines])
                value = '\n' + value
            else:
                value = self.desc.attr(name)

2970 2971 2972
            a = "{name} = {value}".format(name=name,
                                          type=attr_type,
                                          value=value)
2973

2974 2975 2976 2977
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

2978
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
2979
        dist_context = get_default_distributed_context()
2980 2981
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
2982 2983
            attrs_str += ", {name} = {value}".format(name="dist_attr",
                                                     value=dist_op)
2984

2985 2986
        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
2987 2988
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
2989 2990 2991 2992 2993
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2994
    def __str__(self):
2995
        return self._to_readable_code()
2996 2997 2998

    __repr__ = __str__

F
fengjiayi 已提交
2999 3000
    @property
    def type(self):
3001
        return self.desc.type()
F
fengjiayi 已提交
3002 3003

    def input(self, name):
3004
        r"""
3005
        Get the input arguments according to the input parameter name.
3006

3007 3008
        Args:
            name(str): The input parameter name.
3009

3010 3011 3012
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
3013
        """
F
fengjiayi 已提交
3014 3015
        return self.desc.input(name)

W
Wu Yi 已提交
3016
    def _rename_input(self, old_name, new_name):
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
3027
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
3028

W
Wu Yi 已提交
3029
    def _rename_output(self, old_name, new_name):
3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
3040
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
3041

F
fengjiayi 已提交
3042 3043 3044 3045
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
3046 3047 3048 3049 3050 3051 3052 3053
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
3054
    def output(self, name):
3055
        r"""
3056
        Get output arguments by the output parameter name.
3057

3058 3059
        Args:
            name(str): The output parameter name.
3060

3061 3062 3063
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
3064
        """
F
fengjiayi 已提交
3065 3066 3067 3068 3069 3070
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

3071 3072 3073 3074 3075 3076 3077 3078
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
3079
    def has_attr(self, name):
3080
        """
3081 3082
        Whether this Operator has the attribute with name or not.

3083
        Args:
3084
            name(str): the attribute name.
3085

3086 3087
        Returns:
            bool: True if has this attribute.
3088 3089

        """
F
fengjiayi 已提交
3090 3091 3092
        return self.desc.has_attr(name)

    def attr_type(self, name):
3093
        """
3094
        Get the type of attribute by attribute's name.
3095

3096 3097
        Args:
            name(str): the attribute name.
3098

3099 3100
        Returns:
            core.AttrType: the attribute type.
3101
        """
F
fengjiayi 已提交
3102 3103
        return self.desc.attr_type(name)

W
Wu Yi 已提交
3104
    def _set_attr(self, name, val):
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
3115 3116
        self._update_desc_attr(name, val)

3117 3118 3119
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
3131 3132
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
3133 3134
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
3135
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
3136 3137 3138 3139
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
3140
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
3141

F
fengjiayi 已提交
3142 3143 3144 3145 3146
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
3147
        """
3148 3149
        Get the attribute by name.

3150
        Args:
3151
            name(str): the attribute name.
3152

3153 3154
        Returns:
            bool|int|str|float|list: The attribute value. The return value
3155 3156
            can be any valid attribute type.
        """
F
fengjiayi 已提交
3157
        return self.desc.attr(name)
Y
Yu Yang 已提交
3158

W
Wu Yi 已提交
3159
    def _block_attr_id(self, name):
3160
        """
G
gongweibao 已提交
3161
        Get the block attribute's id by name.
3162

3163 3164
        Args:
            name(str): the attribute name.
3165

3166 3167
        Returns:
            int: the block index.
3168
        """
W
Wu Yi 已提交
3169
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
3170

W
Wu Yi 已提交
3171
    def _block_attr(self, name):
G
gongweibao 已提交
3172 3173 3174 3175 3176 3177 3178 3179 3180 3181
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
3182
        id = self._block_attr_id(name)
G
gongweibao 已提交
3183 3184 3185
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
3186
    def _blocks_attr(self, name):
G
gongweibao 已提交
3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
3197
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
3198 3199 3200 3201 3202
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
3203
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
3204 3205 3206 3207 3208 3209 3210 3211 3212 3213
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
3214
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
3215

J
JiayiFeng 已提交
3216
    def all_attrs(self):
F
fengjiayi 已提交
3217
        """
3218 3219 3220
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3221
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3222 3223 3224 3225
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
3226 3227
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3228
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
3229 3230 3231
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3232
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
3233 3234 3235 3236
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
3237 3238
        return attr_map

3239 3240 3241
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3242 3243 3244 3245

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3246 3247 3248
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3249 3250 3251 3252 3253 3254 3255 3256

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3257 3258
            return False

3259 3260 3261 3262 3263 3264
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Operator.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    def dims_mapping(self, name):
        """
        Get the dims_mapping for the op's var named `name`.
        """
        dims_mapping_attr_name = name + core.kAutoParallelSuffix()
        return self.attr(dims_mapping_attr_name)

    @property
    def pipeline_stage(self):
        """
        Get pipeline stage of the Operator.
        """
        pipeline_stage_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix()
        return self.desc.attr(pipeline_stage_attr_name)

Y
Yu Yang 已提交
3290

Y
Yu Yang 已提交
3291
class Block(object):
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3306
        use `Program._create_block()` to create a block.
3307 3308 3309 3310

    Examples:
        .. code-block:: python

3311 3312 3313
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3314 3315 3316 3317 3318 3319 3320 3321 3322
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3323
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3324
        self.desc = program.desc.block(idx)
3325
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3326
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3327
        self.program = program
3328
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
3329

3330
    def __str__(self):
3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3365
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3377

F
fengjiayi 已提交
3378 3379
    def to_string(self, throw_on_error, with_details=False):
        """
3380 3381
        Get debug string.

F
fengjiayi 已提交
3382 3383
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3384
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3385
            with_details(bool): more details about variables and parameters
3386 3387
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3388

3389 3390
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3391
        """
3392 3393
        assert isinstance(throw_on_error, bool) and isinstance(
            with_details, bool)
F
fengjiayi 已提交
3394
        if with_details:
F
fengjiayi 已提交
3395
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3396 3397
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
3398
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3399
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
3400
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
3401
            for op in self.ops:
F
fengjiayi 已提交
3402 3403
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
3404 3405 3406
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3407 3408
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3409 3410
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3411 3412 3413

    __repr__ = __str__

Y
Yu Yang 已提交
3414 3415
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3416
        return self.desc.parent
Y
Yu Yang 已提交
3417

Y
Yu Yang 已提交
3418 3419 3420 3421
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3422
    def _set_forward_block_idx(self, idx):
3423 3424 3425 3426 3427 3428 3429 3430 3431
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3432
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3433

3434 3435 3436 3437 3438 3439 3440 3441
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3442 3443
    @property
    def idx(self):
Y
Yu Yang 已提交
3444
        return self.desc.id
Y
Yu Yang 已提交
3445

Q
Qiao Longfei 已提交
3446
    def var(self, name):
3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3460
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
3461 3462 3463
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
3464 3465
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3466
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3467
        return v
Q
Qiao Longfei 已提交
3468

X
Xin Pan 已提交
3469
    def _find_var_recursive(self, name):
3470 3471 3472 3473 3474 3475 3476
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3477
            Variable: the Variable with the giving name. Or None if not found.
3478
        """
Y
Yu Yang 已提交
3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3503
        return None
Y
Yu Yang 已提交
3504

X
Xin Pan 已提交
3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3524

Q
Qiao Longfei 已提交
3525
    def all_parameters(self):
3526
        return list(self.iter_parameters())
3527

3528
    def iter_parameters(self):
M
minqiyang 已提交
3529
        return (item[1] for item in six.iteritems(self.vars)
3530
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
3531

Y
Yu Yang 已提交
3532
    def create_var(self, *args, **kwargs):
J
Jiabin Yang 已提交
3533
        if _non_static_mode():
L
Leo Chen 已提交
3534 3535
            var = _varbase_creator(*args, **kwargs)
        else:
3536 3537 3538
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3539
        return var
Y
Yu Yang 已提交
3540

Q
Qiao Longfei 已提交
3541 3542 3543
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3544
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3545 3546
        """
        Rename variable in vars and ops' inputs and outputs
3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3559
        """
M
minqiyang 已提交
3560 3561
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
3562

T
typhoonzero 已提交
3563
        if not self.has_var(name):
3564
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3565 3566
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3567
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3568 3569 3570 3571 3572 3573
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3574
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3575 3576 3577 3578
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3579
        orig_var_type = v.type
M
minqiyang 已提交
3580
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
3581
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
3582
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
3583
        if var_type == "Parameter":
L
Leo Chen 已提交
3584
            if in_dygraph_mode():
3585 3586 3587 3588 3589 3590 3591 3592 3593
                var = EagerParamBase(d.shape(),
                                     d.dtype(),
                                     type=orig_var_type,
                                     name=new_name,
                                     stop_gradient=stop_gradient,
                                     trainable=trainable,
                                     optimize_attr=optimize_attr,
                                     regularizer=regularizer,
                                     error_clip=error_clip)
3594
            else:
J
Jiabin Yang 已提交
3595
                if _in_legacy_dygraph():
3596 3597 3598 3599 3600 3601 3602 3603 3604
                    var = ParamBase(d.shape(),
                                    d.dtype(),
                                    type=orig_var_type,
                                    name=new_name,
                                    stop_gradient=stop_gradient,
                                    trainable=trainable,
                                    optimize_attr=optimize_attr,
                                    regularizer=regularizer,
                                    error_clip=error_clip)
J
Jiabin Yang 已提交
3605
                else:
3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
                    var = Parameter(self,
                                    d.shape(),
                                    d.dtype(),
                                    type=orig_var_type,
                                    name=new_name,
                                    stop_gradient=stop_gradient,
                                    trainable=trainable,
                                    optimize_attr=optimize_attr,
                                    regularizer=regularizer,
                                    error_clip=error_clip)
T
typhoonzero 已提交
3616
        elif var_type == "Variable":
3617 3618 3619 3620 3621
            var = Variable(self,
                           type=orig_var_type,
                           name=new_name,
                           error_clip=error_clip,
                           stop_gradient=stop_gradient)
T
wip  
typhoonzero 已提交
3622

W
Wu Yi 已提交
3623
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3624 3625 3626
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3627
        self._sync_with_cpp()
3628
        return var
T
typhoonzero 已提交
3629

3630 3631 3632
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
3633
        self.desc._remove_var(cpt.to_bytes(name))
3634 3635
        del self.vars[name]

Y
Yu Yang 已提交
3636 3637
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3638
        param = None
L
Leo Chen 已提交
3639
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3640
            param = EagerParamBase(*args, **kwargs)
L
Leo Chen 已提交
3641
        else:
J
Jiabin Yang 已提交
3642 3643 3644 3645
            if _in_legacy_dygraph():
                param = ParamBase(*args, **kwargs)
            else:
                param = Parameter(global_block, *args, **kwargs)
3646

3647
        if 'initializer' in kwargs:
3648 3649 3650 3651 3652

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3653
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3654
                        # are treated as initialization ops that cause error.
3655
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3656 3657 3658 3659 3660
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
                                "c_broadcast", "c_sync_comm_stream",
                                "coalesce_tensor"
                        ]:
3661
                            continue
3662 3663 3664 3665 3666 3667 3668 3669
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
3670 3671
                                   " is inited by multiple init ops " +
                                   str(init_ops))
3672
            elif init_ops_len == 1:
3673
                # TODO already inited, do nothing, should log a warning
3674 3675 3676
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3677
        return param
Y
Yu Yang 已提交
3678

Y
Yu Yang 已提交
3679
    def append_op(self, *args, **kwargs):
3680 3681 3682 3683 3684 3685
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
J
Jiabin Yang 已提交
3686
        if _non_static_mode():
3687
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
3688
            inplace_map = kwargs.get("inplace_map", None)
J
Jiabin Yang 已提交
3689
            type = kwargs.get("type", None)
3690 3691 3692 3693
            warnings.warn(
                "Op `%s` is executed through `append_op` under the dynamic mode, "
                "the corresponding API implementation needs to be upgraded to "
                "using `_C_ops` method." % type, DeprecationWarning)
3694 3695 3696 3697 3698 3699
            op = Operator(block=self,
                          desc=None,
                          type=type,
                          inputs=None,
                          outputs=None,
                          attrs=attrs)
3700

M
minqiyang 已提交
3701 3702 3703
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
3704
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3705

3706 3707 3708
            _dygraph_tracer().trace_op(type, kwargs.get("inputs", {}),
                                       kwargs.get("outputs",
                                                  {}), attrs if attrs else {},
Z
zyfncg 已提交
3709 3710
                                       kwargs.get("stop_gradient", False),
                                       inplace_map)
M
minqiyang 已提交
3711
        else:
3712 3713
            from paddle.fluid.dygraph.base import param_guard

3714
            op_desc = self.desc.append_op()
3715 3716 3717 3718 3719 3720
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
3721 3722 3723 3724 3725 3726
                op = Operator(block=self,
                              desc=op_desc,
                              type=kwargs.get("type", None),
                              inputs=inputs,
                              outputs=outputs,
                              attrs=kwargs.get("attrs", None))
3727

M
minqiyang 已提交
3728
            self.ops.append(op)
M
minqiyang 已提交
3729

3730 3731
        return op

W
Wu Yi 已提交
3732
    def _insert_op(self, index, *args, **kwargs):
3733 3734 3735 3736 3737 3738 3739 3740 3741
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
3742
        self._sync_with_cpp()
F
fangshuixun007 已提交
3743
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
3744

3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
        Insert an Operator according to the giving arguments, 
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
3762 3763 3764 3765 3766 3767 3768 3769 3770
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
3771 3772
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
3773
        self.desc._remove_op(index, index + 1)
3774 3775
        del self.ops[index]

W
Wu Yi 已提交
3776
    def _slice_ops(self, start, end):
3777 3778 3779 3780 3781 3782 3783 3784 3785 3786
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
3787
        return self.ops[start:end]
Y
Yancey1989 已提交
3788

W
Wu Yi 已提交
3789
    def _prepend_op(self, *args, **kwargs):
J
Jiabin Yang 已提交
3790
        if _non_static_mode():
J
Jiabin Yang 已提交
3791 3792
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
3793 3794 3795 3796 3797 3798 3799 3800 3801 3802
            op = Operator(self,
                          None,
                          type=type,
                          inputs=None,
                          outputs=None,
                          attrs=attrs)

            _dygraph_tracer().trace_op(type, kwargs.get("inputs", {}),
                                       kwargs.get("outputs", {}),
                                       attrs if attrs else {},
M
minqiyang 已提交
3803
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3804
        else:
3805
            op_desc = self.desc._prepend_op()
3806 3807 3808 3809 3810 3811
            op = Operator(self,
                          op_desc,
                          type=kwargs.get("type", None),
                          inputs=kwargs.get("inputs", None),
                          outputs=kwargs.get("outputs", None),
                          attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
3812
            self.ops.insert(0, op)
3813

Y
Yu Yang 已提交
3814 3815
        return op

W
Wu Yi 已提交
3816
    def _sync_with_cpp(self):
3817
        """
3818 3819
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
3820
        """
Q
Qiao Longfei 已提交
3821 3822 3823
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
3824 3825 3826 3827
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
3828 3829 3830 3831 3832 3833
                    self.create_parameter(name=var.name(),
                                          desc=var,
                                          type=var.type(),
                                          shape=var.shape(),
                                          dtype=var.dtype(),
                                          stop_gradient=is_stop_gradient)
3834
                else:
3835 3836 3837 3838
                    self.create_var(name=var.name(),
                                    desc=var,
                                    type=var.type(),
                                    stop_gradient=is_stop_gradient)
Q
Qiao Longfei 已提交
3839

3840
        # sync variables removed from c++ end
3841
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3842
            if not self.desc.find_var(cpt.to_bytes(var)):
3843 3844
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3845
        # sync operators from cpp
3846 3847 3848 3849
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3866 3867 3868 3869 3870

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3871
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3872 3873 3874 3875 3876 3877 3878

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3892 3893 3894 3895
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3896
    def _copy_param_info_from(self, other):
3897
        """
3898 3899
        Copy the information of parameters from the other block.

3900
        Args:
3901 3902 3903 3904 3905
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3906 3907 3908 3909 3910

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3911 3912
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3913
        for p in other.iter_parameters():
3914 3915 3916
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3917 3918
                # if the Parameter is pruned, v may be None
                continue
3919
            assert isinstance(v, Variable)
3920
            new_p = None
L
Leo Chen 已提交
3921
            if in_dygraph_mode():
3922 3923 3924 3925 3926 3927 3928 3929 3930 3931
                new_p = EagerParamBase(shape=v.shape,
                                       dtype=v.dtype,
                                       type=v.type,
                                       lod_level=v.lod_level,
                                       stop_gradient=p.stop_gradient,
                                       trainable=p.trainable,
                                       optimize_attr=p.optimize_attr,
                                       regularizer=p.regularizer,
                                       error_clip=p.error_clip,
                                       name=v.name)
3932
            else:
J
Jiabin Yang 已提交
3933
                if _in_legacy_dygraph():
3934 3935 3936 3937 3938 3939 3940 3941 3942 3943
                    new_p = ParamBase(shape=v.shape,
                                      dtype=v.dtype,
                                      type=v.type,
                                      lod_level=v.lod_level,
                                      stop_gradient=p.stop_gradient,
                                      trainable=p.trainable,
                                      optimize_attr=p.optimize_attr,
                                      regularizer=p.regularizer,
                                      error_clip=p.error_clip,
                                      name=v.name)
J
Jiabin Yang 已提交
3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957
                else:
                    new_p = Parameter(
                        block=self,
                        shape=v.shape,
                        dtype=v.dtype,
                        type=v.type,
                        lod_level=v.lod_level
                        if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
                        stop_gradient=p.stop_gradient,
                        trainable=p.trainable,
                        optimize_attr=p.optimize_attr,
                        regularizer=p.regularizer,
                        error_clip=p.error_clip,
                        name=v.name)
3958 3959
            self.vars[new_p.name] = new_p

3960
    def _clone_variable(self, var, force_persistable=True):
3961 3962
        """
        Clone a variable into current block.
3963

3964 3965
        Args:
            var: the variable to be cloned.
3966 3967 3968
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3969 3970

        Returns:
3971
            Variable: the new  variable cloned from 'var' in current block.
3972 3973
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3974 3975 3976
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
3977 3978 3979
            ret_var = self.create_var(name=var.name,
                                      persistable=var.persistable,
                                      type=var.type)
T
tangwei12 已提交
3980
        elif var.type == core.VarDesc.VarType.RAW:
3981 3982 3983
            ret_var = self.create_var(name=var.name,
                                      persistable=var.persistable,
                                      type=var.type)
T
typhoonzero 已提交
3984 3985 3986 3987 3988 3989
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3990
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3991 3992
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3993 3994 3995 3996 3997 3998 3999
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
4000
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4001 4002
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
4003
        return ret_var
4004

Y
Yu Yang 已提交
4005

4006 4007 4008 4009
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
4010
# of some old Python Variables(all old Python Operators) may have
4011
# been destructed.
4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027
def _apply_pass(main_program,
                startup_program,
                pass_name,
                pass_attrs={},
                pass_attr_types={}):
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
    attrs = core.apply_pass(tmp_main_program, tmp_startup_program, pass_name,
                            pass_attrs, pass_attr_types)
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

4123
    def remove_input_by_id(self, node_id):
4124 4125 4126 4127 4128 4129
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4130
        self.node.remove_input(node_id)
4131

4132
    def remove_input(self, node):
4133 4134 4135 4136
        """
        Remove a node from inputs.

        Args:
4137
            node(IrNode): the node being removed.
4138
        """
4139
        self.node.remove_input(node.node)
4140

4141
    def append_input(self, node):
4142 4143 4144 4145
        """
        Append a node in inputs.

        Args:
4146
            node(IrNode): the node being appended.
4147
        """
4148
        self.node.append_input(node.node)
4149 4150 4151 4152 4153 4154 4155 4156

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

4157
    def remove_output_by_id(self, node_id):
4158 4159 4160 4161 4162 4163
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4164
        self.node.remove_output(node_id)
4165

4166
    def remove_output(self, node):
4167 4168 4169 4170
        """
        Remove a node from outputs.

        Args:
4171
            node(IrNode): the node being removed.
4172
        """
4173
        self.node.remove_output(node.node)
4174

4175
    def append_output(self, node):
4176 4177 4178 4179
        """
        Append a node in outputs.

        Args:
4180
            node(IrNode): the node being appended.
4181
        """
4182
        self.node.append_output(node.node)
4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4230
            "The node variable description can not be None."
4231 4232 4233 4234 4235 4236 4237 4238 4239 4240
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4241
            "The node variable description can not be None."
4242 4243
        return self.node.var().persistable()

4244 4245 4246 4247 4248 4249 4250 4251
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4252
            "The node variable description can not be None."
4253 4254 4255 4256 4257 4258 4259 4260 4261 4262
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4263
            "The node variable description can not be None."
4264 4265 4266 4267 4268 4269 4270 4271 4272 4273
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4274
            "The node variable description can not be None."
4275 4276
        return self.node.var().shape()

4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4324
            "The node operator description can not be None."
4325 4326
        self.node.op()._rename_input(old_input_name, new_input_name)

4327 4328 4329 4330 4331 4332 4333 4334 4335
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4336
            "The node operator description can not be None."
4337 4338
        self.node.op()._rename_output(old_output_name, new_output_name)

4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4350
            "The node operator description can not be None."
4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4364
            "The node operator description can not be None."
4365 4366 4367 4368 4369 4370 4371 4372 4373 4374
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4375
            "The node operator description can not be None."
4376 4377
        return self.node.op().set_type(new_type)

4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4393
            "The node operator description can not be None."
4394 4395 4396 4397
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
4398
                all(isinstance(v, Block) for v in val):
4399 4400
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
4401
                isinstance(val, core.ProgramDesc):
4402 4403 4404 4405
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4406 4407 4408 4409 4410 4411 4412 4413
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4414
            "The node operator description can not be None."
4415 4416 4417 4418 4419 4420 4421 4422 4423 4424
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4425
            "The node operator description can not be None."
4426 4427
        return self.node.op().output_arg_names()

4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4449 4450
class IrGraph(object):
    """
4451
    Python IrGraph. Beneath it is a core.Graph, which is used for
4452
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4453 4454
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4455 4456 4457 4458
    """

    def __init__(self, graph, for_test=False):
        """
4459 4460
        Construct an IrGraph using core.Graph.

4461 4462 4463 4464 4465 4466 4467 4468 4469
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

4470 4471 4472 4473
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4474 4475 4476
        Warns:
            The method only clones the graph structure, not its attributes.

4477 4478 4479
        Returns:
            IrGraph: A new and duplicated graph.
        """
4480
        g = self.graph.clone()
4481 4482
        return IrGraph(g, self._for_test)

4483
    def is_test(self):
4484 4485 4486
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4487 4488
        return self._for_test

W
WangZhen 已提交
4489
    def all_nodes(self):
4490 4491 4492
        """
        Return all nodes included in the graph as a set.
        """
4493
        return {IrNode(node) for node in self.graph.nodes()}
4494

4495
    def all_var_nodes(self):
4496 4497 4498
        """
        Return all variable nodes included in the graph as a set.
        """
4499
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4500

4501
    def all_persistable_nodes(self):
4502 4503 4504
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4505 4506 4507 4508 4509
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
4510
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4511

4512
    def all_op_nodes(self):
4513 4514 4515
        """
        Return all operator nodes included in the graph as a set.
        """
4516
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4517

4518 4519 4520 4521 4522 4523
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
4524
            IrGraph(self.graph.get_sub_graph(i), for_test=for_test)
4525 4526 4527 4528 4529 4530 4531 4532 4533
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4534
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4546
            IrVarNode: the created persistable variable node.
4547
        """
4548 4549 4550 4551 4552
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4553
        return IrVarNode(self.graph.create_var_node(var_desc))
4554 4555

    def create_var_node(self, name, var_type, shape, var_dtype):
4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4567
            IrVarNode: the created variable node.
4568 4569
        """

4570 4571 4572 4573
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4574
        return IrVarNode(self.graph.create_var_node(var_desc))
4575

4576 4577 4578 4579 4580 4581
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4582
    def create_var_node_from_desc(self, var_desc):
4583 4584 4585 4586 4587 4588 4589 4590
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4591
            IrVarNode: the created variable node.
4592
        """
4593
        return IrVarNode(self.graph.create_var_node(var_desc))
4594 4595

    def create_op_node(self, op_type, attrs, inputs, outputs):
4596 4597 4598 4599 4600 4601 4602
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4603
            outputs(dict): the outputs of the operator node.
4604 4605

        Returns:
4606
            IrOpNode: the created operator node.
4607
        """
4608 4609
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4610
        for attr, value in six.iteritems(attrs):
4611
            self._update_desc_attr(op_desc, attr, value)
4612
        for input_name, var_nodes in six.iteritems(inputs):
4613 4614 4615 4616
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
4617
        for output_name, var_nodes in six.iteritems(outputs):
4618 4619 4620 4621
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
4622
        return IrOpNode(self.graph.create_op_node(op_desc))
4623 4624

    def create_op_node_from_desc(self, op_desc):
4625 4626 4627 4628 4629 4630 4631
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4632
            IrOpNode: the created operator node.
4633
        """
4634
        return IrOpNode(self.graph.create_op_node(op_desc))
4635 4636

    def update_input_link(self, old_input_node, new_input_node, op_node):
4637 4638 4639 4640
        """
        Update the input's link of a operator node.

        Args:
4641 4642 4643
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4644
        """
4645
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
4646
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4647
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4648 4649 4650 4651
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
4652
        op_node.rename_input(old_input_node.name(), new_input_node.name())
4653

4654 4655 4656 4657 4658 4659 4660 4661 4662 4663
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
4664
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4665
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
4666 4667 4668 4669 4670 4671
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

4672
    def link_to(self, node_in, node_out):
4673 4674 4675 4676
        """
        Connect two nodes.

        Args:
4677 4678
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
4679
        """
4680 4681 4682 4683
        assert node_in.node in self.graph.nodes(), (
            'node_in(%s) must be in the graph nodes.' % node_in.node.name())
        assert node_out.node in self.graph.nodes(), (
            'node_out(%s) must be in the graph nodes.' % node_out.node.name())
4684 4685
        node_in.append_output(node_out)
        node_out.append_input(node_in)
4686 4687

    def safe_remove_nodes(self, remove_nodes):
4688 4689 4690 4691 4692 4693 4694
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
4695
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
4696 4697 4698 4699
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
4700 4701
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
4702

Z
Zhen Wang 已提交
4703 4704 4705 4706 4707 4708 4709 4710
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4711
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
4712 4713 4714 4715
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4716
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
4717 4718 4719
                        ]
                    else:
                        var_nodes[each_var_name].append(
4720 4721
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
4722 4723
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
4724
    def has_circle(self):
4725 4726 4727 4728 4729 4730
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
4731 4732 4733
        return core.has_circle(self.graph)

    def graph_num(self):
4734 4735 4736 4737 4738 4739
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
4740 4741 4742
        return core.graph_num(self.graph)

    def topology_sort(self):
4743 4744 4745
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
4746
        Notes: the `graph` can not contain a circle.
4747 4748

        Returns:
Z
Zhen Wang 已提交
4749
            list(IrNode): nodes in topology order.
4750
        """
4751
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
4752
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
4753 4754

    def build_adjacency_list(self):
4755 4756 4757 4758
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
4759
            dict{IrNode: set(IrNode)}: the adjacency list.
4760
        """
4761 4762 4763 4764 4765
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
4766

4767 4768 4769 4770 4771 4772 4773 4774
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
4775
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
4776 4777 4778 4779 4780
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

4781 4782
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
4783 4784 4785
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path +
                                          ' -o ' + pdf_save_path,
                                          shell=True)
4786 4787 4788 4789 4790
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

4791
        remove_ctr_vars = set()
4792
        if remove_ctr_var:
4793
            for node in self.all_var_nodes():
4794 4795 4796
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
4797 4798
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

4799 4800
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
4801 4802 4803 4804 4805 4806
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
4807 4808 4809 4810
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
4811 4812
        if not os.path.exists(save_path):
            os.makedirs(save_path)
4813 4814 4815 4816 4817 4818 4819
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
4820 4821 4822
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
4823
        WARN: When the graph includes backward operator nodes, the
4824 4825 4826 4827 4828 4829
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
4830
        convert_pass = core.get_pass('graph_to_program_pass')
4831 4832
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
4833 4834 4835 4836
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

4837 4838 4839 4840 4841 4842 4843 4844
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
4845 4846
        assert target_node is not None, (
            "Cannot find the target node (%s)in the giving set." % node_name)
4847 4848
        return target_node

4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
4865
class Program(object):
D
dzhwinter 已提交
4866
    """
4867
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
4868
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
4869
    it will contain nested block.
4870

J
Jiabin Yang 已提交
4871 4872 4873
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
4874

J
Jiabin Yang 已提交
4875
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
4876
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
4877 4878 4879 4880 4881 4882 4883
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
4884
    **Notes**:
4885 4886 4887
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
4888 4889

    Returns:
J
Jiabin Yang 已提交
4890
        Program: An empty Program.
D
dzhwinter 已提交
4891 4892

    Examples:
4893 4894
        .. code-block:: python

4895 4896 4897 4898
            import paddle
            import paddle.static as static

            paddle.enable_static()
4899

4900 4901 4902 4903 4904
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
4905
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
4906 4907 4908

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
4909 4910 4911

    """

4912 4913
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4914 4915
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4916 4917
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4918
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4919
        self.__op_role_var = []
T
tangwei12 已提交
4920

4921 4922
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4923
        self._is_distributed = False
4924
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4925
        self._is_chief = False
4926 4927 4928
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4929
        self._endpoints = []
4930 4931 4932
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4933
        self._trainers_endpoints = []
4934
        # the distributed lookup table names
T
tangwei12 已提交
4935
        self._distributed_lookup_table = None
4936 4937 4938

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4939 4940
        self._use_lamb = False

4941 4942 4943
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4944

4945 4946 4947
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4948
        self._program_config = None
4949

H
hutuxian 已提交
4950 4951 4952
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4953 4954 4955
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

4956 4957 4958
        # appending gradients times
        self._appending_grad_times = 0

4959 4960 4961 4962
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4963 4964
        # compiled program, i.e. Graph
        self._graph = None
4965 4966
        # to tag whether is startup_program
        self._is_start_up_program_ = False
4967

4968
    def _find_var_class_kwargs(self, new_desc):
4969 4970 4971 4972 4973 4974 4975 4976
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
4991 4992 4993 4994 4995 4996
                    'type':
                    new_var_desc.type(),
                    'name':
                    new_var_desc.name(),
                    'shape':
                    get_var_desc_attr_or_none(new_var_desc, "shape", [
4997 4998 4999 5000
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
5001 5002
                    'dtype':
                    get_var_desc_attr_or_none(new_var_desc, "dtype", [
5003 5004 5005 5006 5007 5008 5009 5010 5011
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'lod_level':
                    get_var_desc_attr_or_none(new_var_desc, "lod_level", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
5012 5013 5014 5015 5016 5017 5018 5019 5020 5021
                    'error_clip':
                    old_var.error_clip if old_var is not None else None,
                    'stop_gradient':
                    old_var.stop_gradient if old_var is not None else False,
                    'is_data':
                    old_var.is_data if old_var is not None else False,
                    'need_check_feed':
                    new_var_desc.need_check_feed(),
                    'belong_to_optimizer':
                    old_var.belong_to_optimizer
5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051
                    if old_var is not None else False,
                }

                if isinstance(old_var, Parameter):
                    kwargs.update({
                        'trainable': old_var.trainable,
                        'optimize_attr': old_var.optimize_attr,
                        'regularizer': old_var.regularizer,
                        'do_model_average': old_var.do_model_average,
                        'need_clip': old_var.need_clip,
                        'is_distributed': old_var.is_distributed,
                        'is_parameter': old_var.is_parameter,
                    })
                    block_new_vars.append({
                        'class': Parameter,
                        'kwargs': copy.deepcopy(kwargs),
                    })
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
                    block_new_vars.append({
                        'class': Variable,
                        'kwargs': copy.deepcopy(kwargs),
                    })

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
5052
        assert block_num == self.desc.num_blocks()
5053 5054

        # clear old blocks and desc
5055 5056 5057 5058 5059 5060 5061 5062 5063
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
5064

5065
        del desc
5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

5085 5086 5087 5088 5089 5090 5091 5092 5093 5094
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

5095 5096
                import paddle
                import paddle.static as static
5097

5098 5099 5100
                paddle.enable_static()

                prog = static.default_main_program()
5101 5102 5103 5104 5105
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
5106
                prog1 = static.default_main_program()
5107 5108 5109 5110 5111 5112 5113 5114
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
5115
    @property
5116
    def _op_role(self):
Y
yuyang18 已提交
5117 5118 5119 5120 5121 5122 5123 5124
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
5125
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
5126 5127 5128 5129
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
5130 5131
        return self._current_role

5132 5133
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
5134 5135 5136
        self._current_role = role

    @property
5137
    def _op_role_var(self):
Y
yuyang18 已提交
5138
        """
5139
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
5140

5141
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
5142 5143 5144

        Notes: This is a very low-level API. Users should not use it directly.
        """
5145
        return self.__op_role_var
Y
yuyang18 已提交
5146

5147
    @signature_safe_contextmanager
5148 5149 5150 5151 5152
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
5153 5154 5155 5156
        try:
            yield
        finally:
            self._current_role = tmp_role
5157

S
rename  
sneaxiy 已提交
5158
    @signature_safe_contextmanager
W
Wu Yi 已提交
5159
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
5160 5161 5162 5163 5164 5165 5166
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
5167
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
5168 5169 5170

        Examples:

5171
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
5172
            >>> p, g = backward(...)
W
Wu Yi 已提交
5173
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
5174 5175
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
5176
        tmp_role = self._current_role
5177
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
5178

Y
yuyang18 已提交
5179 5180
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
5181
        self.__op_role_var = [
5182 5183 5184
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
5185 5186 5187 5188 5189
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
5190

S
rename  
sneaxiy 已提交
5191
    @signature_safe_contextmanager
X
Xin Pan 已提交
5192
    def _lr_schedule_guard(self, is_with_opt=False):
5193 5194 5195 5196 5197 5198 5199
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
5200 5201 5202 5203
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
5204 5205 5206

        Examples:

5207
            >>> import paddle.fluid as fluid
5208 5209 5210 5211
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
5212 5213

        tmp_role = self._current_role
5214
        tmp_var = self.__op_role_var
5215

5216 5217
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
5218 5219
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
5220
        # TODO(typhoonzero): how to set target learning rate var
5221
        self.__op_role_var = []
5222 5223 5224 5225 5226
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
5227

5228
    def __str__(self):
Y
yuyang18 已提交
5229 5230 5231 5232 5233 5234 5235 5236 5237
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5258 5259
            import paddle
            import paddle.static as static
5260

5261 5262 5263
            paddle.enable_static()

            cur_program = static.Program()
5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5275
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
5276 5277 5278 5279
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5280
            program_str += '\n'
5281
        return program_str
Y
Yang Yang(Tony) 已提交
5282

F
fengjiayi 已提交
5283 5284 5285
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5286

J
Jiabin Yang 已提交
5287 5288 5289
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5290

J
Jiabin Yang 已提交
5291
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5292

H
haowang101779990 已提交
5293
        Returns:
J
Jiabin Yang 已提交
5294
            str: The debug string describe current Program.
Y
yuyang18 已提交
5295 5296

        Raises:
J
Jiabin Yang 已提交
5297
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5298

5299 5300 5301
        Examples:
            .. code-block:: python

5302 5303 5304 5305
                import paddle
                import paddle.static as static

                paddle.enable_static()
5306

5307 5308 5309
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5310
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5311
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5312
                print("program string without detail: {}".format(prog_string))
5313
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5314
        """
5315 5316 5317 5318 5319 5320 5321 5322 5323
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
5324 5325 5326 5327 5328 5329
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
5330 5331
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
5332 5333
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5334

W
Wu Yi 已提交
5335
    def _get_desc(self):
Y
yuyang18 已提交
5336 5337 5338 5339 5340 5341 5342
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5343 5344
        return self.desc

X
version  
Xin Pan 已提交
5345 5346 5347
    def _version(self):
        return self.desc._version()

5348
    def clone(self, for_test=False):
Y
yuyang18 已提交
5349
        """
5350 5351 5352 5353
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5354

5355
        Create a new Program with forward content of original one when ``for_test=True``.
5356
        Create a new Program as same as the original one when ``for_test=False``.
5357

5358
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5359 5360 5361
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5362

5363 5364
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5365 5366
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
5367
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
5368

J
Jiabin Yang 已提交
5369
        For Example:
5370
          ::
L
Luo Tao 已提交
5371

5372 5373 5374 5375 5376 5377
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
5378
            pred = static.nn.fc(x=img, size=10, actvation='relu')
5379
            loss = paddle.mean(pred)
5380
            # Here we use clone before Momentum
5381 5382
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
5383
            optimizer.minimize(loss)
5384

J
Jiabin Yang 已提交
5385
        Args:
5386

5387 5388
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
5389

J
Jiabin Yang 已提交
5390
        Returns:
5391
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
5392

Y
yuyang18 已提交
5393 5394 5395

        Examples:

5396 5397 5398 5399 5400 5401 5402
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5419
            1. To clone a test program, the sample code is:
5420 5421 5422
                .. code-block:: python

                    import six
5423 5424 5425 5426 5427 5428
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5441 5442
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5443 5444 5445

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5446 5447 5448
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5449
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5450 5451
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5452
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5453 5454
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5455
                            test_program = train_program.clone(for_test=True)
5456
                    print_prog(test_program)
J
Jiabin Yang 已提交
5457 5458 5459 5460

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5461
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5462 5463 5464 5465
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5466 5467 5468
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5469 5470 5471
                            sgd.minimize(avg_loss)


5472
            2. The clone method can be avoid if you create program for training and program for testing individually.
5473 5474 5475
                .. code-block:: python

                    import six
5476 5477 5478 5479 5480 5481
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5493

5494
                    def network():
5495
                        img = static.data(name='image', shape=[None, 784])
5496
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5497 5498
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5499
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5500 5501
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5502 5503
                        return avg_loss

5504 5505 5506 5507 5508
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5509
                            avg_loss = network()
5510
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5511
                            sgd.minimize(avg_loss)
5512
                    # the test startup program is not used.
5513 5514
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5515 5516
                            avg_loss = network()
                    print_prog(test_program_2)
5517

5518
            The two code snippets above will generate and print same programs.
5519
        """
5520

T
tangwei12 已提交
5521
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5522 5523 5524
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5525
        pruned_origin_block_id_map = None
5526
        if for_test:
5527 5528 5529 5530 5531 5532 5533 5534 5535
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5536
        else:
5537
            p = Program()
G
gongweibao 已提交
5538 5539
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5540
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
5541 5542 5543
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
5544 5545

            p._current_role = self._current_role
5546
            p.__op_role_var = self.__op_role_var
5547
            p._appending_grad_times = self._appending_grad_times
5548 5549
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
5550

T
tangwei12 已提交
5551
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5552
            # its desc.
W
Wu Yi 已提交
5553
            p._sync_with_cpp()
5554

W
Wu Yi 已提交
5555
        p._copy_param_info_from(self)
5556
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5557
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5558
        return p
5559

5560
    def _prune(self, targets):
Y
yuyang18 已提交
5561 5562 5563 5564 5565 5566 5567 5568
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5569
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5570 5571 5572 5573
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5574
        """
5575
        return self._prune_with_input([], targets)
5576 5577

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5578
        """
5579 5580 5581 5582 5583 5584 5585 5586 5587 5588
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5589
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5590 5591 5592 5593 5594 5595
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5596
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5597 5598 5599
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5600 5601
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
5602 5603
        if not isinstance(targets, list):
            targets = [targets]
5604 5605 5606

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
5607 5608 5609
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
5610

5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

5627 5628 5629 5630
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
5631 5632 5633
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
5634
                else:
5635 5636 5637
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
5638 5639 5640 5641 5642 5643

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
5644 5645 5646
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
5647

5648 5649 5650 5651 5652 5653 5654 5655 5656
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
5657
                        # Skip optimize op except for optimize op in targets,
5658 5659 5660 5661 5662
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
5663

5664
                if target_op is not None:
5665 5666 5667
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
5668

5669
        res = Program()
5670 5671
        res.desc, pruned_origin_block_id_map = core.prune(
            self.desc, set(feeded_var_names), targets_idx)
M
minqiyang 已提交
5672 5673 5674
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5675
        res._sync_with_cpp()
5676 5677 5678 5679 5680

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

5681 5682
        return res

X
Xin Pan 已提交
5683
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
5684
        """
F
fengjiayi 已提交
5685 5686 5687 5688 5689
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

5690
        3. change the :code:`is_test`
Y
yuyang18 已提交
5691 5692 5693
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

5694
        Args:
X
Xin Pan 已提交
5695 5696
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
5697

Y
yuyang18 已提交
5698 5699 5700 5701 5702 5703
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
5704
        res = Program()
5705
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
5706 5707 5708 5709

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
5710
        if prune_read_op:
5711 5712 5713 5714 5715 5716 5717 5718 5719
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
5720
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
5721 5722

        # change all `is_test` attributes to True
M
minqiyang 已提交
5723
        for i in six.moves.range(res.desc.num_blocks()):
5724
            block = res.desc.block(i)
M
minqiyang 已提交
5725
            for j in six.moves.range(block.op_size()):
5726 5727
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
5728
                    op._set_attr('is_test', True)
5729 5730 5731
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
M
minqiyang 已提交
5732 5733 5734
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5735
        res._sync_with_cpp()
5736 5737
        return res

5738
    def _remove_training_info(self, clip_extra=True):
5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()

        for i in six.moves.range(res.desc.num_blocks()):
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827
            if not clip_extra:
                continue
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
                for name in remove_input_list:
                    op.remove_input(name)

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
                for name in remove_output_list:
                    op.remove_output(name)

                remove_attr_list = []
                op_quant_name = core.op_proto_and_checker_maker.kOpWithQuantAttrName(
                )
                quant = bool(op.attr(op_quant_name)
                             ) if op_quant_name in op.attr_names() else False
                quant_attrs = [
                    op_quant_name, "quantization_type", "skip_quant",
                    "activation_bits", "bit_length", "quantize_weight_bits",
                    "weight_quant_scale"
                ]
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        if attr_proto.extra:
                            remove_attr_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
5828 5829
        return res

5830 5831
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
5832
        """
5833 5834 5835
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5836

5837 5838
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
5839

J
Jiabin Yang 已提交
5840
        Args:
Y
yuyang18 已提交
5841

J
Jiabin Yang 已提交
5842
            binary_str_type (str): the binary prootbuf string.
5843

J
Jiabin Yang 已提交
5844 5845
        Returns:
            Program: A deserialized Program.
5846 5847 5848 5849

        Examples:
            .. code-block:: python

5850 5851 5852 5853
                import paddle
                import paddle.static as static

                paddle.enable_static()
5854

5855 5856 5857 5858
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
5859

5860
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
5861

5862
                    z = paddle.matmul(x=x, y=y)
5863

5864 5865
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
5866

5867
                    print(static.default_main_program())
5868
                    print(prog_restored)
Y
yuyang18 已提交
5869
        """
5870 5871
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
5872
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
5873
        p._sync_with_cpp()
5874
        return p
Y
Yu Yang 已提交
5875

5876
    @staticmethod
5877
    def _construct_from_desc(desc):
5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
5893 5894
    @property
    def random_seed(self):
Y
yuyang18 已提交
5895
        """
J
Jiabin Yang 已提交
5896
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
5897 5898
        the random seed from random device.

5899 5900
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
5901 5902 5903

        Returns:
            int64: Random seed in current Program
5904

5905 5906 5907 5908

        Examples:
            .. code-block:: python

5909 5910 5911
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
5912

5913 5914 5915
                paddle.enable_static()

                prog = static.default_main_program()
5916
                random_seed = prog.random_seed
5917
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
5918 5919 5920
                print(random_seed)
                ## 0
                ## the default random seed is 0
5921

5922
                # Here we need to set random seed before we use paddle.nn.functional.dropout
5923
                prog.random_seed = 1
5924
                z_var = F.dropout(x_var, 0.7)
5925

5926
                print(prog.random_seed)
5927 5928
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
5929
        """
D
dzhwinter 已提交
5930 5931
        return self._seed

Q
qiaolongfei 已提交
5932 5933
    @property
    def num_blocks(self):
Y
yuyang18 已提交
5934
        """
5935 5936
        The number of :ref:`api_guide_Block_en`  in this Program.

5937 5938
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
5939 5940 5941

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
5942

5943 5944 5945 5946

        Examples:
            .. code-block:: python

5947 5948 5949 5950
                import paddle
                import paddle.static as static

                paddle.enable_static()
5951

5952
                prog = static.default_main_program()
5953 5954
                num_blocks = prog.num_blocks
                print(num_blocks)
5955

5956 5957
                # print result:
                # 1
Y
yuyang18 已提交
5958
        """
Q
qiaolongfei 已提交
5959 5960
        return self.desc.num_blocks()

D
dzhwinter 已提交
5961 5962 5963
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
5964 5965 5966
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
5967 5968
        self._seed = seed

Y
Yu Yang 已提交
5969
    def __repr__(self):
5970
        return self.__str__()
5971

Y
Yu Yang 已提交
5972
    def global_block(self):
Y
yuyang18 已提交
5973
        """
5974 5975
        .. note::
            This API has no effect in Dygraph mode.
5976 5977 5978

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
5979 5980
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
5981

5982 5983 5984 5985

        Examples:
            .. code-block:: python

5986 5987 5988 5989
                import paddle
                import paddle.static as static

                paddle.enable_static()
5990

5991
                prog = static.default_main_program()
5992 5993
                gb_block = prog.global_block()
                print(gb_block)
5994

Y
yuyang18 已提交
5995
        """
Y
Yu Yang 已提交
5996 5997
        return self.blocks[0]

Q
Qiao Longfei 已提交
5998
    def block(self, index):
Y
yuyang18 已提交
5999
        """
6000 6001
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6002

6003 6004
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
6005 6006
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
6007

J
Jiabin Yang 已提交
6008 6009
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
6010 6011 6012 6013

        Examples:
            .. code-block:: python

6014 6015 6016 6017
                import paddle
                import paddle.static as static

                paddle.enable_static()
6018

6019
                prog = static.default_main_program()
6020 6021
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
6022
        """
Q
Qiao Longfei 已提交
6023 6024
        return self.blocks[index]

Y
Yu Yang 已提交
6025
    def current_block(self):
Y
yuyang18 已提交
6026
        """
6027 6028
        .. note::
            This API has no effect in Dygraph mode.
6029

J
Jiabin Yang 已提交
6030 6031
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
6032

J
Jiabin Yang 已提交
6033 6034
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
6035

6036 6037 6038
        Examples:
            .. code-block:: python

6039 6040 6041 6042
                import paddle
                import paddle.static as static

                paddle.enable_static()
6043

6044
                prog = static.default_main_program()
6045 6046
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
6047
        """
Y
Yu Yang 已提交
6048 6049
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
6050
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
6051 6052 6053 6054 6055
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
6056

Y
yuyang18 已提交
6057 6058 6059 6060 6061
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
6062
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
6063 6064 6065
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
6066 6067 6068 6069
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
6070
    def _rollback(self):
Y
yuyang18 已提交
6071 6072 6073 6074 6075
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
6076 6077
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
6078
    def _sync_with_cpp(self):
Y
yuyang18 已提交
6079 6080 6081 6082 6083 6084 6085 6086 6087 6088
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
6089 6090 6091
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
6092
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
6093

W
Wu Yi 已提交
6094
    def _copy_param_info_from(self, other):
6095
        """
6096
        Copy the information of parameters from other program.
D
dzhwinter 已提交
6097

Y
yuyang18 已提交
6098 6099 6100
        Notes: This is a very low level API. Users should not invoke it
        directly.

6101 6102 6103 6104 6105 6106 6107
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6108 6109 6110
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
6111

W
Wu Yi 已提交
6112
        self.global_block()._copy_param_info_from(other.global_block())
6113

6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6125 6126 6127
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
6128 6129
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
6130
        self._parameters_on_pservers = other._parameters_on_pservers
6131
        self._endpoints = other._endpoints
6132
        self._ps_endpoint = other._ps_endpoint
6133 6134
        self._distributed_lookup_table = other._distributed_lookup_table

6135
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
6136 6137
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
6138

Y
yuyang18 已提交
6139 6140 6141
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
6142 6143
        Args:
            other(Program): Other program
6144 6145 6146 6147
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
6148 6149 6150 6151 6152

        Returns:
            None
        """
        if not isinstance(other, Program):
6153 6154 6155
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
6156

6157 6158 6159 6160 6161
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
6162 6163 6164

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
6165 6166
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
6167
            for var in list(block.vars.values()):
6168 6169 6170 6171 6172 6173 6174
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
6175

6176
    def list_vars(self):
Y
yuyang18 已提交
6177
        """
6178
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
6179

J
Jiabin Yang 已提交
6180
        Returns:
6181
            iterable Tensors: The Generator will yield every Tensor in this program.
6182 6183 6184 6185

        Examples:
            .. code-block:: python

6186 6187
                import paddle
                import paddle.static as static
6188

6189 6190 6191 6192 6193
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
6194 6195
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
6196

6197 6198
                # var img : LOD_TENSOR.shape(-1, 1, 28, 28).dtype(float32).stop_gradient(True)
                # var label : LOD_TENSOR.shape(-1, 1).dtype(int64).stop_gradient(True)
Y
yuyang18 已提交
6199
        """
6200
        for each_block in self.blocks:
6201
            for each_var in list(each_block.vars.values()):
6202 6203
                yield each_var

6204 6205 6206 6207 6208 6209 6210 6211 6212 6213
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

6214 6215 6216 6217
                import paddle
                import paddle.static as static

                paddle.enable_static()
6218

6219 6220
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
6221
                hidden = static.nn.fc(x=data, size=10)
6222 6223
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
6224 6225 6226 6227 6228 6229 6230

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
6231 6232
                # persist trainable param fc_0.w_0 : LOD_TENSOR.shape(13, 10).dtype(float32).stop_gradient(False)
                # persist trainable param fc_0.b_0 : LOD_TENSOR.shape(10,).dtype(float32).stop_gradient(False)
6233 6234 6235 6236 6237 6238 6239 6240 6241 6242
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
            mode(str, optional): Source of the obtained parameters and buffers. 
                    'opt' :  The return value only contains the variable in the optimizer. 
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.  
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
6285
        # can not be imported at the begainning of this file.
6286 6287 6288 6289
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
6290 6291
                "`scope` should be None or `paddle.static.Scope'` type, but received {}."
                .format(type(scope)))
6292 6293 6294 6295 6296

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
6297 6298 6299
            raise TypeError(
                "Type of `mode` should be string, but received {}.".format(
                    type(mode)))
6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
6326 6327
                    "`mode` string should be 'param', 'opt' or 'all', but received {}."
                    .format(mode))
6328 6329 6330 6331 6332 6333 6334 6335

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
6336 6337
                    "Can not find Variable '{}' in the scope. Make sure it is initialized"
                    .format(var.name))
6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
        Set parameters and persistable buffers in state_dict to program. 
        An exception will throw if shape or dtype of the parameters is not match.
        
        .. note::
            This function MUST called after run start_up_program

        Args:
            state_dict(dict): the dict store parameters and persistable buffers. 
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
        
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
                    type(state_dict)))

        vars_dict = {var.name: var for var in self.list_vars()}
        condition = True if 'StructuredToParameterName@@' in state_dict else False
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
                except TypeError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
            else:
6407 6408 6409
                warnings.warn(
                    ("Skip loading for '{0}'. Because '{0}' not in the program."
                     .format(name)))
6410

Y
Yu Yang 已提交
6411

6412
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
6413
class Parameter(Variable):
6414
    """
6415
    Parameter is derived from Variable. A parameter is a persistable
6416
    Variable, and will be updated by optimizers after each iteration.
6417
    The training of a neural network is essentially the updating of
6418 6419
    its parameters.

6420
    Relative to a general Variable, a Parameter has several its own
6421 6422
    member variables:

6423 6424 6425 6426 6427 6428 6429 6430 6431 6432
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
6433 6434
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6435 6436
    """

6437 6438 6439 6440 6441 6442
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
6443 6444 6445 6446 6447
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6448
        if len(shape) == 0:
6449 6450
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
6451 6452 6453

        for each in shape:
            if each < 0:
6454 6455 6456
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
6457

6458 6459 6460 6461 6462 6463 6464
        Variable.__init__(self,
                          block,
                          persistable=True,
                          shape=shape,
                          dtype=dtype,
                          type=type,
                          **kwargs)
Y
Yu Yang 已提交
6465 6466 6467 6468
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6469 6470
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6471
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6472

6473 6474
        self.need_clip = kwargs.get('need_clip', True)

6475 6476
        self.is_distributed = False

6477 6478
        self.is_parameter = True

F
fengjiayi 已提交
6479
    def __str__(self):
6480
        return self._to_readable_code()
F
fengjiayi 已提交
6481

F
update  
fengjiayi 已提交
6482 6483 6484
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6485

F
update  
fengjiayi 已提交
6486 6487 6488 6489 6490 6491 6492 6493
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6494 6495 6496 6497 6498 6499 6500 6501 6502
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6503
        """
6504 6505
        assert isinstance(throw_on_error, bool) and isinstance(
            with_details, bool)
F
update  
fengjiayi 已提交
6506 6507 6508
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
6509
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
6510
            for attr_name in additional_attr:
6511 6512
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
6513 6514
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6515 6516 6517 6518
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6519

6520 6521
class ParamBase(core.VarBase):
    """
6522 6523 6524
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
6525 6526 6527
    The training of a neural network is essentially the updating of
    its ParamBase.

6528
    Relative to a general Tensor, a ParamBase has several its own
6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
6541 6542
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

6568 6569 6570 6571
        super(ParamBase,
              self).__init__(dtype if dtype else core.VarDesc.VarType.FP32,
                             list(shape) if shape else [], name,
                             core.VarDesc.VarType.LOD_TENSOR, True)
6572

6573 6574
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
6575 6576 6577 6578 6579 6580 6581

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

6582 6583
        self.need_clip = kwargs.get('need_clip', True)

6584
        self.is_distributed = kwargs.get('is_distributed', False)
6585
        # self.block = default_main_program().global_block()
6586

6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

6600
    def __str__(self):
6601
        """
6602
        Convert a ParamBase object to a readable string.
6603

6604
        Returns(str): A readable string.
6605 6606 6607 6608

        Examples:
            .. code-block:: python

6609
                import paddle
6610 6611 6612 6613 6614 6615 6616
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
6617
        """
6618 6619
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
6620

6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
6632

6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

6651 6652 6653 6654
    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
6655 6656 6657 6658 6659 6660
        return new_param

    __repr__ = __str__


if hasattr(core, "eager"):
6661
    _core_eager_eagertensor = core.eager.Tensor
6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713
else:
    _core_eager_eagertensor = object


class EagerParamBase(_core_eager_eagertensor):
    """
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode). 
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

6714 6715 6716
        if isinstance(shape, core.eager.Tensor):
            shape = shape.numpy()

6717 6718 6719 6720
        super(EagerParamBase,
              self).__init__(dtype if dtype else core.VarDesc.VarType.FP32,
                             list(shape) if shape else [], name,
                             core.VarDesc.VarType.LOD_TENSOR, True)
6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
        # self.block = default_main_program().global_block()

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
            tensor=super(EagerParamBase, self).__str__())

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
6805 6806
        return new_param

6807 6808 6809
    __repr__ = __str__


Y
Yu Yang 已提交
6810
# program is a global instance.
Y
Yu Yang 已提交
6811 6812
_main_program_ = Program()
_startup_program_ = Program()
6813
_startup_program_._is_start_up_program_ = True
6814

6815

6816
def default_startup_program():
Y
Yu Yang 已提交
6817
    """
Y
yuyang18 已提交
6818 6819
    Get default/global startup program.

6820 6821
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
T
tangwei12 已提交
6822

6823 6824
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
6825

6826 6827
    Returns:
        Program: current default startup program.
6828

6829
    Returns type: 
6830 6831 6832 6833

    Examples:
        .. code-block:: python

6834
            import paddle
6835

6836
            paddle.enable_static()
6837 6838 6839 6840
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
6841
    """
Y
Yu Yang 已提交
6842
    return _startup_program_
6843

6844

6845
def default_main_program():
Y
Yu Yang 已提交
6846
    """
6847
    This API can be used to get ``default main program`` which store the 
6848
    descriptions of Ops and tensors.
T
tangwei12 已提交
6849

6850
    For example ``z = paddle.add(x, y)`` will create a new ``add`` 
6851
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
6852

6853 6854
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
6855
    :code:`default_main_program` when the program is not specified.
6856

6857
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
6858

Y
Yu Yang 已提交
6859
    Returns:
6860
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
6861 6862 6863 6864

    Examples:
        ..  code-block:: python

6865
            import paddle
6866

6867
            paddle.enable_static()
6868
            # Sample Network:
6869 6870 6871
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
6872

6873 6874 6875
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
6876
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
6877
    """
Y
Yu Yang 已提交
6878
    return _main_program_
Y
Yu Yang 已提交
6879 6880 6881 6882 6883


def switch_main_program(program):
    """
    Switch the main program to a new program.
6884

Y
Yu Yang 已提交
6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
6899
    Switch the startup program to a new program
Y
Yu Yang 已提交
6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
6912
@signature_safe_contextmanager
Y
Yu Yang 已提交
6913 6914
def program_guard(main_program, startup_program=None):
    """
6915 6916
    :api_attr: Static Graph

6917 6918 6919
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
6920

G
guofei 已提交
6921
    Args:
6922 6923
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
6924 6925 6926 6927
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
6928
    Examples:
6929
       .. code-block:: python
T
tangwei12 已提交
6930

6931
          import paddle
Y
yuyang18 已提交
6932

6933 6934 6935 6936 6937
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
6938
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
6939 6940 6941

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
6942

Y
Yu Yang 已提交
6943
    Examples:
6944
       .. code-block:: python
Y
yuyang18 已提交
6945

6946
          import paddle
6947

6948 6949 6950 6951 6952
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
6953

Y
Yu Yang 已提交
6954
    """
6955
    from .data_feeder import check_type
6956 6957
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
6958 6959
    main_program = switch_main_program(main_program)
    if startup_program is not None:
6960
        check_type(startup_program, 'startup_program', Program,
6961
                   'paddle.static.program_guard')
6962 6963
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
6964
        startup_program = switch_startup_program(startup_program)
6965 6966 6967 6968 6969 6970
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
6971 6972


W
Wu Yi 已提交
6973
def _get_var(name, program=None):
X
xuwei06 已提交
6974
    """
Y
yuyang18 已提交
6975
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
6976

X
xuwei06 已提交
6977 6978 6979
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
6980
        If None, default_global_program() will be used.
X
xuwei06 已提交
6981 6982 6983 6984 6985 6986 6987

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
6988
    assert isinstance(program, Program)
X
xuwei06 已提交
6989 6990

    return program.global_block().var(name)
6991 6992


S
rename  
sneaxiy 已提交
6993
@signature_safe_contextmanager
L
lujun 已提交
6994 6995
def _dygraph_guard(tracer):
    global _dygraph_tracer_
6996
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
6997
    _dygraph_tracer_ = tracer
6998
    core._switch_tracer(tracer)
M
minqiyang 已提交
6999

7000 7001 7002
    try:
        yield
    finally:
7003 7004
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
7005 7006


S
rename  
sneaxiy 已提交
7007
@signature_safe_contextmanager
L
lujun 已提交
7008
def _dygraph_place_guard(place):
7009 7010 7011
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
7012 7013
    _set_dygraph_tracer_expected_place(place)

7014 7015 7016
    try:
        yield
    finally:
7017
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
7018
        _set_dygraph_tracer_expected_place(_global_expected_place_)
7019 7020


7021 7022 7023 7024 7025 7026 7027 7028 7029 7030
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
7031 7032 7033
    
    Note:
        The API only supports static mode.
7034 7035 7036 7037

    A context manager that specifies the device on which the OP will be placed.

    Args:
7038 7039
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs. 
7040 7041 7042 7043 7044 7045 7046
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
7047
    
7048
        .. code-block:: python
7049 7050
            
            # required: gpu
Z
Zhang Ting 已提交
7051
            import paddle
7052

Z
Zhang Ting 已提交
7053 7054 7055
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
7056
            if support_gpu:
Z
Zhang Ting 已提交
7057
                place = paddle.CUDAPlace(0)
7058 7059

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
7060 7061 7062
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
7063

Z
Zhang Ting 已提交
7064
            with paddle.static.device_guard("cpu"):
7065
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
7066 7067
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
7068
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
7069
                out = paddle.reshape(data1, shape=shape)
7070

Z
Zhang Ting 已提交
7071 7072
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
7073 7074 7075
            result = exe.run(fetch_list=[out])
    """

7076 7077 7078 7079 7080
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
7081
    if device not in ['cpu', 'gpu', 'npu', 'xpu', '', None]:
7082
        raise ValueError(
7083
            "The Attr(device) should be 'cpu' 'npu' 'xpu' or 'gpu', and it can also be empty string or None "
7084
            "when there is no need to specify device. But received %s" % device)
7085 7086
    if index:
        device = ":".join([device, index])
7087
    pre_device = switch_device(device)
7088 7089 7090 7091
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
7092 7093


7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124
def _switch_cuda_graph_mode(cuda_graph_attr):
    global _current_cuda_graph_mode
    pre_mode = _current_cuda_graph_mode
    _current_cuda_graph_mode = cuda_graph_attr
    return pre_mode


@signature_safe_contextmanager
def _cuda_graph_guard(cuda_graph_attr=None):
    """

    Note:
        The API only supports static mode.

    A context manager that specifies the cuda_graph_mode which indicating the cuda graph capture under static mode.

    Args:
        cuda_graph_attr(str|None): The cuda graph attr with the format of:
                                   cuda_graph_capture_mode;memory_pool_id;cuda_graph_id
    """
    assert not _non_static_mode(
    ), "cuda_graph_guard only works under static mode"
    assert core.is_compiled_with_cuda(
    ), "cuda_graph_guard context can be only used when Paddle is compiled with cuda"
    pre_mode = _switch_cuda_graph_mode(cuda_graph_attr)
    try:
        yield
    finally:
        _switch_cuda_graph_mode(pre_mode)


G
guofei 已提交
7125 7126 7127
def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
7128
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7129 7130 7131 7132 7133 7134 7135

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

7136 7137
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
7138 7139 7140 7141
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
7142 7143
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
7144 7145 7146 7147 7148 7149 7150 7151
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
7152
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7153 7154 7155 7156 7157 7158 7159 7160 7161 7162

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

7163
            import paddle
G
guofei 已提交
7164 7165

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
7166
            res = paddle.get_flags(flags)
G
guofei 已提交
7167 7168 7169 7170 7171 7172
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
7173 7174
            if (_global_flags().is_public(key)):
                value = _global_flags()[key]
G
guofei 已提交
7175 7176 7177 7178 7179 7180 7181
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
7182 7183
        if (_global_flags().is_public(flags)):
            value = _global_flags()[flags]
G
guofei 已提交
7184 7185 7186 7187 7188 7189 7190 7191
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
7192 7193 7194 7195 7196 7197 7198


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
    if isinstance(place, (core.Place, core.XPUPlace, core.CPUPlace,
7199
                          core.CUDAPinnedPlace, core.CUDAPlace, core.NPUPlace,
7200
                          core.IPUPlace, core.MLUPlace, core.CustomPlace)):
7201 7202 7203 7204 7205 7206 7207 7208 7209
        return place

    if not isinstance(place, str):
        raise ValueError(
            "place only support string which is 'Place' and so on.")

    place = place.lower()
    if (place == "cpu"):
        return core.CPUPlace()
7210

7211 7212 7213
    if (place == "device"):
        return core.Place()

7214
    # GPU
7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_gpu_place))
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
7230 7231

    # XPU
7232 7233 7234 7235 7236 7237 7238 7239 7240 7241
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with XPU".format(avaliable_xpu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with NPU".format(avaliable_npu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

J
jianghaicheng 已提交
7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with IPU".format(avaliable_ipu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278
    # MLU
    avaliable_mlu_place = re.match(r'mlu:\d+', place)
    if avaliable_mlu_place:
        if not core.is_compiled_with_mlu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with MLU".format(avaliable_mlu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.MLUPlace(device_id)

7279
    raise ValueError(
7280 7281
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace, IPUPlace, MLUPlace and NPUPlace, but received {}."
        .format(place))
7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret