multiplex_op.cu 2.8 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
21
using LoDTensor = framework::LoDTensor;
Y
Yibing Liu 已提交
22 23 24 25 26 27

template <typename T>
class MultiplexGPUKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
    auto ins = ctx.MultiInput<Tensor>("X");
28
    auto* out = ctx.Output<LoDTensor>("Out");
Y
Yibing Liu 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
    out->mutable_data<T>(ctx.GetPlace());

    auto rows = ins[1]->dims()[0];
    auto cols = ins[1]->dims()[1];
    // copy index to cpu
    Tensor index_t_cpu;
    index_t_cpu.CopyFrom<T>(*(ins[0]), paddle::platform::CPUPlace());
    auto index = index_t_cpu.data<T>();
    for (auto i = 0; i < rows; i++) {
      int k = (int)index[i] + 1;
      cudaMemcpy(out->data<T>() + i * cols, ins[k]->data<T>() + i * cols,
                 cols * sizeof(T), cudaMemcpyDeviceToDevice);
    }
  }
};

template <typename T>
class MultiplexGradGPUKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
    auto* d_out = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto ins = ctx.MultiInput<Tensor>("X");
    auto d_ins = ctx.MultiOutput<Tensor>(framework::GradVarName("X"));
52 53 54 55 56 57 58
    for (size_t i = 1; i < d_ins.size(); ++i) {
      if (d_ins[i]) {
        d_ins[i]->mutable_data<T>(ctx.GetPlace());
        auto dims = d_ins[i]->dims();
        cudaMemset(d_ins[i]->data<T>(), 0,
                   framework::product(dims) * sizeof(T));
      }
Y
Yibing Liu 已提交
59 60 61 62 63 64 65 66 67 68
    }

    auto rows = ins[1]->dims()[0];
    auto cols = ins[1]->dims()[1];
    // copy index to cpu
    Tensor index_t_cpu;
    index_t_cpu.CopyFrom<T>(*(ins[0]), paddle::platform::CPUPlace());
    auto index = index_t_cpu.data<T>();
    for (auto i = 0; i < rows; i++) {
      int k = (int)index[i] + 1;
69 70 71 72
      if (d_ins[k]) {
        cudaMemcpy(d_ins[k]->data<T>() + i * cols, d_out->data<T>() + i * cols,
                   cols * sizeof(T), cudaMemcpyDeviceToDevice);
      }
Y
Yibing Liu 已提交
73 74 75 76 77 78 79 80 81 82
    }
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_GPU_KERNEL(multiplex, ops::MultiplexGPUKernel<float>);
REGISTER_OP_GPU_KERNEL(multiplex_grad, ops::MultiplexGradGPUKernel<float>);