test_imperative_optimizer.py 8.2 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

M
minqiyang 已提交
15 16
from __future__ import print_function

M
minqiyang 已提交
17 18 19
import contextlib
import unittest
import numpy as np
M
minqiyang 已提交
20
import six
M
minqiyang 已提交
21

M
minqiyang 已提交
22
import paddle
M
minqiyang 已提交
23 24
import paddle.fluid as fluid
from paddle.fluid import core
25
from paddle.fluid.optimizer import SGDOptimizer, Adam
26
from paddle.fluid.dygraph.nn import FC
L
lujun 已提交
27
from paddle.fluid.dygraph.base import to_variable
M
minqiyang 已提交
28
from test_imperative_base import new_program_scope
29 30


31
class MLP(fluid.Layer):
M
minqiyang 已提交
32 33
    def __init__(self, name_scope, param_attr=None, bias_attr=None):
        super(MLP, self).__init__(name_scope)
M
minqiyang 已提交
34

M
minqiyang 已提交
35 36
        self._fc1 = FC(self.full_name(), 10)
        self._fc2 = FC(self.full_name(), 10)
M
minqiyang 已提交
37

38 39 40 41
    def forward(self, inputs):
        y = self._fc1(inputs)
        y = self._fc2(y)
        return y
42

M
minqiyang 已提交
43

44 45
class TestImperativeOptimizerBase(unittest.TestCase):
    def setUp(self):
M
minqiyang 已提交
46
        self.batch_num = 20
M
minqiyang 已提交
47

48
    def get_optimizer(self):
49
        raise NotImplementedError()
M
minqiyang 已提交
50

51 52 53 54 55 56 57 58 59
    def reader_decorator(self, reader):
        def _reader_imple():
            for item in reader():
                image = np.array(item[0]).reshape(1, 28, 28)
                label = np.array(item[1]).astype('int64').reshape(1)
                yield image, label

        return _reader_imple

60
    def _check_mlp(self):
M
minqiyang 已提交
61
        seed = 90
62 63
        batch_size = 128

L
lujun 已提交
64
        with fluid.dygraph.guard():
M
minqiyang 已提交
65 66 67
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

M
minqiyang 已提交
68 69
            mlp = MLP('mlp')
            optimizer = self.get_optimizer()
70 71 72 73 74 75 76 77

            batch_py_reader = fluid.io.PyReader(capacity=1)
            batch_py_reader.decorate_sample_list_generator(
                paddle.batch(
                    self.reader_decorator(paddle.dataset.mnist.train()),
                    batch_size=batch_size,
                    drop_last=True),
                places=fluid.CPUPlace())
M
minqiyang 已提交
78

M
minqiyang 已提交
79
            dy_param_init_value = {}
80
            for batch_id, data in enumerate(batch_py_reader()):
81
                if batch_id >= self.batch_num:
M
minqiyang 已提交
82 83
                    break

84 85
                img = data[0]
                label = data[1]
86 87
                label._stop_gradient = True

88 89
                cost = mlp(img)
                avg_loss = fluid.layers.reduce_mean(cost)
L
lujun 已提交
90
                dy_out = avg_loss.numpy()
M
minqiyang 已提交
91

M
minqiyang 已提交
92
                if batch_id == 0:
93
                    for param in mlp.parameters():
L
lujun 已提交
94
                        dy_param_init_value[param.name] = param.numpy()
M
minqiyang 已提交
95

L
lujun 已提交
96
                avg_loss.backward()
M
minqiyang 已提交
97
                optimizer.minimize(avg_loss)
98
                mlp.clear_gradients()
M
minqiyang 已提交
99
                dy_param_value = {}
100
                for param in mlp.parameters():
L
lujun 已提交
101
                    dy_param_value[param.name] = param.numpy()
M
minqiyang 已提交
102

M
minqiyang 已提交
103 104 105 106 107 108 109
        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))

110
            mlp = MLP('mlp')
M
minqiyang 已提交
111
            optimizer = self.get_optimizer()
M
minqiyang 已提交
112 113 114 115 116 117
            train_reader = paddle.batch(
                paddle.dataset.mnist.train(), batch_size=128, drop_last=True)

            img = fluid.layers.data(
                name='pixel', shape=[1, 28, 28], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
118
            cost = mlp(img)
119
            avg_loss = fluid.layers.reduce_mean(cost)
M
minqiyang 已提交
120
            optimizer.minimize(avg_loss)
M
minqiyang 已提交
121 122 123 124

            # initialize params and fetch them
            static_param_init_value = {}
            static_param_name_list = []
125
            for param in mlp.parameters():
M
minqiyang 已提交
126 127 128 129 130 131 132 133
                static_param_name_list.append(param.name)

            out = exe.run(fluid.default_startup_program(),
                          fetch_list=static_param_name_list)

            for i in range(len(static_param_name_list)):
                static_param_init_value[static_param_name_list[i]] = out[i]

M
minqiyang 已提交
134
            for batch_id, data in enumerate(train_reader()):
135
                if batch_id >= self.batch_num:
M
minqiyang 已提交
136 137
                    break

M
minqiyang 已提交
138
                static_x_data = np.array(
M
minqiyang 已提交
139 140 141 142
                    [x[0].reshape(1, 28, 28) for x in data]).astype('float32')
                y_data = np.array([x[1] for x in data]).astype('int64').reshape(
                    [128, 1])

M
minqiyang 已提交
143
                fetch_list = [avg_loss.name]
M
minqiyang 已提交
144 145
                fetch_list.extend(static_param_name_list)
                out = exe.run(fluid.default_main_program(),
M
minqiyang 已提交
146
                              feed={"pixel": static_x_data,
M
minqiyang 已提交
147 148 149 150 151 152 153
                                    "label": y_data},
                              fetch_list=fetch_list)

                static_param_value = {}
                static_out = out[0]
                for i in range(1, len(out)):
                    static_param_value[static_param_name_list[i - 1]] = out[i]
M
minqiyang 已提交
154 155 156 157 158 159 160

        for key, value in six.iteritems(static_param_init_value):
            self.assertTrue(np.allclose(value, dy_param_init_value[key]))

        self.assertTrue(np.allclose(static_out, dy_out))

        for key, value in six.iteritems(static_param_value):
M
minqiyang 已提交
161
            self.assertTrue(np.allclose(value, dy_param_value[key]))
M
minqiyang 已提交
162 163


164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
class TestImperativeOptimizerPiecewiseDecay(TestImperativeOptimizerBase):
    def get_optimizer(self):
        bd = [3, 6, 9]
        optimizer = SGDOptimizer(learning_rate=fluid.layers.piecewise_decay(
            boundaries=bd, values=[0.1 * (0.1**i) for i in range(len(bd) + 1)]))
        return optimizer

    def test_sgd(self):
        self._check_mlp()


class TestImperativeOptimizerNaturalExpDecay(TestImperativeOptimizerBase):
    def get_optimizer(self):
        optimizer = SGDOptimizer(learning_rate=fluid.layers.natural_exp_decay(
            learning_rate=0.1,
            decay_steps=10000,
            decay_rate=0.5,
            staircase=True))
        return optimizer

    def test_sgd(self):
        self._check_mlp()


class TestImperativeOptimizerExponentialDecay(TestImperativeOptimizerBase):
    def get_optimizer(self):
        optimizer = SGDOptimizer(learning_rate=fluid.layers.exponential_decay(
            learning_rate=0.1,
            decay_steps=10000,
            decay_rate=0.5,
            staircase=True))
        return optimizer

    def test_sgd(self):
        self._check_mlp()


class TestImperativeOptimizerInverseTimeDecay(TestImperativeOptimizerBase):
    def get_optimizer(self):
        optimizer = Adam(learning_rate=fluid.layers.inverse_time_decay(
            learning_rate=0.1,
            decay_steps=10000,
            decay_rate=0.5,
            staircase=True))
        return optimizer

    def test_adam(self):
        self._check_mlp()


class TestImperativeOptimizerPolynomialDecay(TestImperativeOptimizerBase):
    def get_optimizer(self):
        optimizer = SGDOptimizer(learning_rate=fluid.layers.polynomial_decay(
            learning_rate=0.1, decay_steps=5, cycle=self.cycle))
        return optimizer

    def test_sgd_cycle(self):
        self.cycle = True
        self._check_mlp()

    def test_sgd(self):
        self.cycle = False
        self._check_mlp()


M
minqiyang 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
class TestImperativeOptimizerCosineDecay(TestImperativeOptimizerBase):
    def get_optimizer(self):
        optimizer = SGDOptimizer(learning_rate=fluid.layers.cosine_decay(
            learning_rate=0.1, step_each_epoch=10000, epochs=120))
        return optimizer

    def test_sgd(self):
        self._check_mlp()


class TestImperativeOptimizerNoamDecay(TestImperativeOptimizerBase):
    def get_optimizer(self):
        optimizer = SGDOptimizer(learning_rate=fluid.layers.noam_decay(
            d_model=512, warmup_steps=8000))
        return optimizer

    def test_sgd(self):
        self._check_mlp()
M
minqiyang 已提交
247 248 249 250


if __name__ == '__main__':
    unittest.main()