conv_op.cc 37.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_op.h"
Y
Update  
Yi Wang 已提交
16

17
#include <memory>
Y
Update  
Yi Wang 已提交
18 19 20
#include <string>
#include <vector>

21 22
#include "paddle/fluid/framework/op_version_registry.h"

23 24 25
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
26 27 28 29 30

#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/miopen_helper.h"
#endif

31 32 33
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
34
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
C
chengduoZH 已提交
35 36 37 38

namespace paddle {
namespace operators {

39 40
std::vector<int64_t> ConvOp::ComputeOutputShape(
    framework::InferShapeContext* ctx) const {
41 42
  OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "Conv");
  OP_INOUT_CHECK(ctx->HasInput("Filter"), "Input", "Filter", "Conv");
C
chengduoZH 已提交
43 44 45

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
46

C
chengduoZH 已提交
47 48
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
L
liym27 已提交
49 50
  std::string padding_algorithm =
      ctx->Attrs().Get<std::string>("padding_algorithm");
C
chengduoZH 已提交
51
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
52
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
L
liym27 已提交
53
  const std::string data_format = ctx->Attrs().Get<std::string>("data_format");
54 55 56 57 58

  // MKL-DNN Kernels are using NCHW order of dims description
  // so we ignore data_format consideration for MKL-DNN kernel
  const bool channel_last = (this->IsMKLDNNType() == false) &&
                            (data_format == "NHWC" || data_format == "NDHWC");
C
chengduoZH 已提交
59

60 61
  PADDLE_ENFORCE_EQ(
      in_dims.size() == 4 || in_dims.size() == 5, true,
62
      platform::errors::InvalidArgument(
63 64
          "The input of Op(Conv) should be a 4-D or 5-D Tensor. But "
          "received: input's dimension is %u, input's shape is [%s].",
65
          in_dims.size(), in_dims));
66

C
chengduoZH 已提交
67 68
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
69
      platform::errors::InvalidArgument(
70 71 72 73
          "The input's dimension and filter's dimension of "
          "Op(Conv) should be equal. But received: the input's shape is [%s], "
          "the input's dimension is %d; the filter's shape is [%s],  "
          "the filter's dimension is %d.",
74
          in_dims, in_dims.size(), filter_dims, filter_dims.size()));
75

76 77 78 79 80 81 82 83 84 85 86
  int stride_size = strides.size();
  for (int i = 0; i < stride_size; ++i) {
    PADDLE_ENFORCE_GT(
        strides[i], 0,
        platform::errors::InvalidArgument(
            "The stride of Op(Conv) should be larget than 0, but received "
            "stride is %d.",
            strides[i]));
  }

  int in_sub_stride_size = in_dims.size() - stride_size;
87 88 89
  PADDLE_ENFORCE_EQ(
      in_dims.size(), strides.size() + 2U,
      platform::errors::InvalidArgument(
90 91 92 93 94 95 96
          "The difference of input's dimension and Attr(strides)'s "
          "length must be euqal to 2 for Op(Conv). "
          "But received: input's dimension is %d, input's shape is [%s]; "
          "Attr(stride)'s length is %d, Attr(stride) is [%s]; "
          "difference of input's dimention and Attr(strides)'s length = %u.",
          in_dims.size(), in_dims, strides.size(),
          framework::make_ddim(strides), in_sub_stride_size));
L
liym27 已提交
97 98 99

  const auto input_channels =
      channel_last ? in_dims[in_dims.size() - 1] : in_dims[1];
F
fengjiayi 已提交
100

101 102
  PADDLE_ENFORCE_EQ(
      input_channels, filter_dims[1] * groups,
103
      platform::errors::InvalidArgument(
104 105 106 107 108
          "The number of input's channels should be equal to filter's channels "
          "* groups for Op(Conv). But received: the input's channels is %d, "
          "the input's shape is [%s]; the filter's channels is %d, the "
          "filter's shape is [%s]; the groups is %d, the data_format is %s. "
          "The error may come from wrong data_format setting.",
109 110
          input_channels, in_dims, filter_dims[1], filter_dims, groups,
          data_format));
C
chengduoZH 已提交
111
  PADDLE_ENFORCE_EQ(
Y
Yang Yu 已提交
112
      filter_dims[0] % groups, 0,
113
      platform::errors::InvalidArgument(
114 115 116 117
          "The number of output's channels (filter's first dimension) of "
          "Op(Conv) should be divided by groups. But received: "
          "the output channels is %d, the filter's shape is [%s], "
          "the groups is %d.",
118
          filter_dims[0], filter_dims, groups));
119 120 121 122
  PADDLE_ENFORCE_GT(
      filter_dims[0], 0,
      platform::errors::InvalidArgument(
          "the size of filter at axis 0 should be greater than 0"));
C
chengduoZH 已提交
123

L
liym27 已提交
124 125 126 127 128 129
  framework::DDim in_data_dims;
  if (channel_last) {
    in_data_dims = framework::slice_ddim(in_dims, 1, in_dims.size() - 1);
  } else {
    in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
  }
130

131 132
  framework::DDim filter_data_dims =
      framework::slice_ddim(filter_dims, 2, filter_dims.size());
133

L
liym27 已提交
134 135 136 137 138 139 140 141
  std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
  UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                           in_data_dims, strides, ksize);

  std::vector<int64_t> output_shape({in_dims[0]});
  if (!channel_last) {
    output_shape.push_back(filter_dims[0]);
  }
142
  for (int i = 0; i < in_data_dims.size(); ++i) {
T
tink2123 已提交
143
    if ((!ctx->IsRuntime()) &&
L
liym27 已提交
144
        (in_data_dims[i] <= 0 || filter_dims[i + 2] <= 0)) {
T
tink2123 已提交
145 146
      output_shape.push_back(-1);
    } else {
147 148 149
      output_shape.push_back(
          ConvOutputSize(in_data_dims[i], filter_data_dims[i], dilations[i],
                         paddings[2 * i], paddings[2 * i + 1], strides[i]));
T
tink2123 已提交
150
    }
C
chengduoZH 已提交
151
  }
L
liym27 已提交
152 153 154 155
  if (channel_last) {
    output_shape.push_back(filter_dims[0]);
  }

156
  return output_shape;
C
chengduoZH 已提交
157 158
}

159 160
framework::OpKernelType ConvOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
161 162
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
163
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
164
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
165
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Input");
L
liym27 已提交
166 167
  std::string data_format =
      "AnyLayout";  // todo enable data layout when it's ready
M
mozga-intel 已提交
168 169
  framework::DataLayout layout = framework::StringToDataLayout(data_format);

170
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
171
  if (platform::CanCUDNNBeUsed(ctx)) {
172
    library = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
173 174
  }
#endif
175
#ifdef PADDLE_WITH_MKLDNN
176 177
  if (library == framework::LibraryType::kPlain &&
      this->CanMKLDNNBeUsed(ctx, input_data_type)) {
178
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
179
    layout = framework::DataLayout::kMKLDNN;
180
    customized_type_value =
181 182
        (input_data_type == framework::DataTypeTrait<int8_t>::DataType() ||
         input_data_type == framework::DataTypeTrait<uint8_t>::DataType())
183 184
            ? kConvMKLDNNINT8
            : kConvMKLDNNFP32;
185
  }
186
#endif
187

188
  if (input_data_type != framework::proto::VarType::INT8 &&
189 190
      input_data_type != framework::proto::VarType::UINT8 &&
      input_data_type != framework::proto::VarType::BF16) {
191
    auto filter_data_type = ctx.Input<Tensor>("Filter")->type();
192 193 194 195 196 197 198 199
    PADDLE_ENFORCE_EQ(
        input_data_type, filter_data_type,
        platform::errors::InvalidArgument(
            "input and filter data type should be consistent, "
            "but received input data type is %s and filter type "
            "is %s",
            paddle::framework::DataTypeToString(input_data_type),
            paddle::framework::DataTypeToString(filter_data_type)));
200
  }
201
#ifndef PADDLE_WITH_ASCEND_CL
K
Kexin Zhao 已提交
202
  if (input_data_type == framework::proto::VarType::FP16) {
203 204 205 206
    PADDLE_ENFORCE_EQ(
        library, framework::LibraryType::kCUDNN,
        platform::errors::InvalidArgument(
            "float16 can only be used when CUDNN or NPU is used"));
K
Kexin Zhao 已提交
207
  }
208
#endif
W
wuhuanzhou 已提交
209 210 211 212 213 214 215 216 217
#if PADDLE_WITH_CUDA
  if (input_data_type == framework::proto::VarType::BF16 &&
      library == framework::LibraryType::kCUDNN) {
    PADDLE_ENFORCE_GE(
        platform::CudnnVersion(), 8100,
        platform::errors::InvalidArgument(
            "bfloat16 can only be used when CUDNN_VERSION >= 8100"));
  }
#endif  // PADDLE_WITH_CUDA
K
Kexin Zhao 已提交
218

219 220 221
  auto type = framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                      library, customized_type_value);
  return type;
222 223
}

224 225 226 227 228 229 230 231 232 233 234 235 236
framework::OpKernelType ConvOp::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if ((var_name == "Input") &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    auto dl = framework::StringToDataLayout(data_format);
237
    // Some models may have intentionally set "AnyLayout" for conv
238 239
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
240 241
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), dl);
242 243 244 245 246 247 248
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

Y
Yu Yang 已提交
249
void Conv2DOpMaker::Make() {
250 251 252
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
253 254
      .SetDefault(false)
      .AsExtra();
L
liym27 已提交
255 256 257 258 259 260
  AddInput("Input",
           "(Tensor) The input tensor of convolution operator. "
           "The format of input tensor is NCHW or NHWC, where N is batch size, "
           "C is the "
           "number of channels, H is the height of the feature, "
           "and W is the width of the feature.");
C
chengduoZH 已提交
261
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
262
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
263 264
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
265 266
           "H is the height of the filter, and W is the width of the filter. "
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
267
           "input image channels divided by the groups.");
268 269 270 271
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
272 273
      .AsDispensable()
      .AsExtra();
274 275 276
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
277
           "Used with fuse_residual_connection fusion.")
278 279
      .AsDispensable()
      .AsExtra();
Y
Yihua Xu 已提交
280 281
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator. "
L
liym27 已提交
282
            "It has same data fromat and data type as the Input.");
C
chengduoZH 已提交
283 284 285 286
  AddAttr<std::vector<int>>("strides",
                            "(vector<int> default:{1, 1}), the "
                            "strides(h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
287
      .SetDefault({1, 1});
C
chengduoZH 已提交
288 289
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int> default:{0, 0}), the "
L
liym27 已提交
290 291
                            "paddings(pad_height_top, pad_height_bottom, "
                            "pad_width_left, pad_wifth_right)  of "
C
chengduoZH 已提交
292
                            "convolution operator.")
C
chengduoZH 已提交
293
      .SetDefault({0, 0});
L
liym27 已提交
294 295 296 297 298 299
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
C
chengduoZH 已提交
300 301
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
302
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
303 304 305 306
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
307
      .SetDefault(1);
C
chengduoZH 已提交
308
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
309 310
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of "
C
chengduoZH 已提交
311
                            "convolution operator.")
C
chengduoZH 已提交
312
      .SetDefault({1, 1});
313 314 315
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
316 317
      .SetDefault(false)
      .AsExtra();
318 319
  AddAttr<bool>("fuse_relu_before_depthwise_conv",
                "(bool, default false) Only used in cuda depthwise kernel")
320 321
      .SetDefault(false)
      .AsExtra();
322 323
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
324 325
      .SetDefault(false)
      .AsExtra();
326 327 328 329
  AddAttr<bool>(
      "use_quantizer",
      "(bool, default false) "
      "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
330 331
      .SetDefault(false)
      .AsExtra();
332 333 334 335
  AddAttr<std::string>(
      "mkldnn_data_type",
      "(string, default \"float32\"). Data type of mkldnn kernel")
      .SetDefault("float32")
336 337
      .InEnum({"float32", "int8", "bfloat16"})
      .AsExtra();
M
Michal Gallus 已提交
338
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
339 340
      .SetDefault(false)
      .AsExtra();
341 342
  AddAttr<bool>("fuse_brelu",
                "(bool, default false) Only used in mkldnn kernel")
343 344
      .SetDefault(false)
      .AsExtra();
345 346
  AddAttr<float>("fuse_brelu_threshold",
                 "(float, default false 6.0) Only used in mkldnn kernel")
347 348
      .SetDefault(6.0f)
      .AsExtra();
349 350
  AddAttr<std::string>("fuse_activation",
                       "(string, default \"\") Only used in mkldnn kernel")
351 352
      .SetDefault("")
      .AsExtra();
353 354
  AddAttr<float>("fuse_alpha",
                 "(float, default 0.0) Only used in mkldnn kernel")
355 356
      .SetDefault(0.0f)
      .AsExtra();
357
  AddAttr<float>("fuse_beta", "(float, default 0.0) Only used in mkldnn kernel")
358 359
      .SetDefault(0.0f)
      .AsExtra();
360 361 362 363
  AddAttr<bool>(
      "use_addto",
      "(bool, default false) If use addto strategy or not, only used in "
      "cudnn kernel")
364 365
      .SetDefault(false)
      .AsExtra();
366
  AddAttr<bool>("fuse_residual_connection",
367
                "(bool, default false) Only used in mkldnn kernel. Used "
368 369
                "whenever convolution output is as an input to residual "
                "connection.")
370 371
      .SetDefault(false)
      .AsExtra();
372 373 374
  AddAttr<float>("Scale_in",
                 "Scale_in to be used for int8 input data."
                 "Only used with MKL-DNN INT8.")
375 376
      .SetDefault(1.0f)
      .AsExtra();
377 378 379
  AddAttr<float>("Scale_out",
                 "Scale_out to be used for int8 output data."
                 "Only used with MKL-DNN INT8.")
380 381
      .SetDefault(1.0f)
      .AsExtra();
382 383 384
  AddAttr<float>("Scale_in_eltwise",
                 "Scale_in_eltwise to be used for int8 eltwise input data."
                 "Only used with MKL-DNN INT8.")
385 386
      .SetDefault(1.0f)
      .AsExtra();
387 388 389
  AddAttr<std::vector<float>>("Scale_weights",
                              "Scale_weights to be used for int8 weights data."
                              "Only used with MKL-DNN INT8.")
390 391
      .SetDefault({1.0f})
      .AsExtra();
392 393 394
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Force INT8 kernel output FP32, only "
                "used in MKL-DNN INT8")
395 396
      .SetDefault(false)
      .AsExtra();
397 398 399 400 401 402
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
L
liym27 已提交
403
      .SetDefault("NCHW");
404 405 406 407 408 409 410 411
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. Need set use_cudnn to true."
               "workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
412 413
      .SetDefault(platform::GetDefaultConvWorkspaceSizeLimitMB())
      .AsExtra();
414 415
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
416
                "convolution, whether enable exhaustive search "
翟飞跃 已提交
417
                "for cuDNN convolution or not, default is False.")
418 419
      .SetDefault(false)
      .AsExtra();
L
liym27 已提交
420

C
chengduoZH 已提交
421
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
422 423
Convolution Operator.

C
chengduoZH 已提交
424
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
425
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
426
parameters is checked in the infer-shape.
L
liym27 已提交
427
Input(Input) and Output(Output) are in NCHW or NHWC format. Where N is batch
C
fix doc  
chengduoZH 已提交
428
size, C is the number of channels, H is the height of the feature, and W is
C
chengduoZH 已提交
429
the width of the feature.
430
Filters(Input) is MCHW format format. Where M is the number of output image channels, C is
C
chengduoZH 已提交
431 432 433 434
the number of input image channels, H is the height of the filter, and W
is the width of the filter.
Parameters(strides, paddings, dilations) are two elements. These two elements represent
height and width, respectively.
C
chengduoZH 已提交
435 436 437 438
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
439 440
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
chengduoZH 已提交
441
  Output:
C
chengduoZH 已提交
442 443 444
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
$$
L
liym27 已提交
445 446
       H_{out}= \frac{(H_{in} + pad_height_top + pad_height_bottom - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
       W_{out}= \frac{(W_{in} + pad_width_left + pad_width_right - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
C
chengduoZH 已提交
447
$$
C
chengduoZH 已提交
448
)DOC");
Q
qingqing01 已提交
449
  Apply();
C
chengduoZH 已提交
450 451
}

Y
Yu Yang 已提交
452
void Conv3DOpMaker::Make() {
453 454 455
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
456 457
      .SetDefault(false)
      .AsExtra();
C
chengduoZH 已提交
458 459
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
460
      "(Tensor) The input tensor of convolution operator. "
L
liym27 已提交
461 462
      "The format of input tensor is NCDHW or NDHWC. Where N is batch size, C "
      "is the "
C
fix doc  
chengduoZH 已提交
463 464 465
      "number of channels, D is the depth of the feature, H is the height of "
      "the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
466
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
467
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
468 469
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
470 471 472
           "D is the depth of the filter, H is the height of the filter, and W "
           "is the width of the filter."
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
473
           "input image channels divided by the groups.");
474 475 476 477
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
           "Used with fuse_residual_connection fusion.")
478 479
      .AsDispensable()
      .AsExtra();
Y
Yihua Xu 已提交
480 481
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator."
L
liym27 已提交
482
            "It has same data fromat and data type as the Input.");
C
chengduoZH 已提交
483 484 485 486
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default:{1, 1, 1}), the "
                            "strides(d_stride, h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
487
      .SetDefault({1, 1, 1});
L
liym27 已提交
488 489 490 491 492 493
  AddAttr<std::vector<int>>(
      "paddings",
      "(vector<int>, default:{0, 0, 0}), the "
      "paddings(pad_depth_front, pad_depth_back, pad_height_top, "
      "pad_height_bottom, pad_width_left, pad_width_right) of convolution "
      "operator.")
C
chengduoZH 已提交
494
      .SetDefault({0, 0, 0});
L
liym27 已提交
495 496 497 498 499 500
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
C
chengduoZH 已提交
501 502
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
503
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
504 505 506 507
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
508
      .SetDefault(1);
C
chengduoZH 已提交
509
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
510 511
                            "(vector<int> default:{1, 1, 1}), the "
                            "dilations(d_dilation, h_dilation, w_dilation) of "
C
chengduoZH 已提交
512
                            "convolution operator.")
C
chengduoZH 已提交
513
      .SetDefault({1, 1, 1});
514 515 516
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
517 518
      .SetDefault(false)
      .AsExtra();
519 520
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
521 522
      .SetDefault(false)
      .AsExtra();
523 524 525 526
  AddAttr<std::string>(
      "mkldnn_data_type",
      "(string, default \"float32\"). Data type of mkldnn kernel")
      .SetDefault("float32")
527 528
      .InEnum({"float32", "int8", "bfloat16"})
      .AsExtra();
529
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
530 531
      .SetDefault(false)
      .AsExtra();
532 533
  AddAttr<std::string>("fuse_activation",
                       "(string, default \"\") Only used in mkldnn kernel")
534 535
      .SetDefault("")
      .AsExtra();
536 537
  AddAttr<float>("fuse_alpha",
                 "(float, default 0.0) Only used in mkldnn kernel")
538 539
      .SetDefault(0.0f)
      .AsExtra();
540
  AddAttr<float>("fuse_beta", "(float, default 0.0) Only used in mkldnn kernel")
541 542
      .SetDefault(0.0f)
      .AsExtra();
543 544 545 546
  AddAttr<bool>(
      "use_addto",
      "(bool, default false) If use addto strategy or not, only used in "
      "cudnn kernel")
547 548
      .SetDefault(false)
      .AsExtra();
549 550 551 552
  AddAttr<bool>("fuse_residual_connection",
                "(bool, default false) Only used in mkldnn kernel. Used "
                "whenever convolution output is as an input to residual "
                "connection.")
553 554
      .SetDefault(false)
      .AsExtra();
555 556
  AddAttr<std::string>(
      "data_format",
L
liym27 已提交
557 558 559
      "(string, default NCDHW) Only used in "
      "An optional string from: \"NDHWC\", \"NCDHW\". "
      "Defaults to \"NDHWC\". Specify the data format of the output data, "
560
      "the input will be transformed automatically. ")
L
liym27 已提交
561
      .SetDefault("NCDHW");
562 563
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Only used in mkldnn INT8 kernel")
564 565
      .SetDefault(false)
      .AsExtra();
566 567 568 569 570 571 572
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
573 574
      .SetDefault(platform::GetDefaultConvWorkspaceSizeLimitMB())
      .AsExtra();
575 576
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
577
                "convolution, whether enable exhaustive search "
翟飞跃 已提交
578
                "for cuDNN convolution or not, default is False.")
579 580
      .SetDefault(false)
      .AsExtra();
C
chengduoZH 已提交
581
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
582 583
Convolution3D Operator.

C
chengduoZH 已提交
584
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
585
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
586
parameters is checked in the infer-shape.
L
liym27 已提交
587
Input(Input) and output(Output) are in NCDHW or NDHWC format, where N is batch
C
fix doc  
chengduoZH 已提交
588
size, C is the number of channels,D is the depth of the feature, H is the height of
C
chengduoZH 已提交
589 590 591 592 593 594
the feature, and W is the width of the feature.
Filters(Input) is MCDHW format, where M is the number of output image channels,
C is the number of input image channels, D is the depth of the filter,
H is the height of the filter, and W is the width of the filter.
Parameters(strides, paddings, dilations) are three elements. These three elements
represent depth, height and width, respectively.
C
fix doc  
chengduoZH 已提交
595 596 597 598
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
599 600
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, D_f, H_f, W_f)$
C
fix doc  
chengduoZH 已提交
601
  Output:
C
chengduoZH 已提交
602 603 604
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
L
liym27 已提交
605 606 607
       D_{out}= \frac{(D_{in} + pad_depth_front + pad_depth_back - (dilations[0] * (D_f - 1) + 1))}{ strides[0]}+ 1 \\
       H_{out}= \frac{(H_{in} + pad_height_top + pad_height_bottom - (dilations[1] * (H_f - 1) + 1))}{ strides[1]}+ 1 \\
       W_{out}= \frac{(W_{in} + pad_width_left + pad_width_right - (dilations[2] * (W_f - 1) + 1))}{ strides[2]}+ 1
C
chengduoZH 已提交
608
  $$
C
chengduoZH 已提交
609
)DOC");
Q
qingqing01 已提交
610
  Apply();
C
chengduoZH 已提交
611 612
}

C
chengduoZH 已提交
613 614 615 616 617 618 619 620 621 622 623
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

624 625
framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
626 627
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
628
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
629
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
L
liym27 已提交
630
  std::string data_format = "AnyLayout";
M
mozga-intel 已提交
631
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
632
  auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Input");
M
mozga-intel 已提交
633

634
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
635 636
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
637 638
  }
#endif
639 640
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
641
      this->CanMKLDNNBeUsed(ctx, data_type)) {
642
    const std::string data_format = ctx.Attr<std::string>("data_format");
643
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
644
    layout_ = framework::DataLayout::kMKLDNN;
X
Xin Pan 已提交
645
    customized_type_value = kConvMKLDNNFP32;
646
  }
647
#endif
648

649 650
  auto type = framework::OpKernelType(data_type, ctx.GetPlace(), layout_,
                                      library_, customized_type_value);
651
  return type;
652 653
}

654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
framework::OpKernelType ConvOpGrad::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if (((var_name == "Input") ||
       (var_name == framework::GradVarName("Output"))) &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    auto dl = framework::StringToDataLayout(data_format);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), dl);
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

H
hong 已提交
680 681
template <typename T>
class Conv2DGradMaker : public framework::SingleGradOpMaker<T> {
682
 public:
H
hong 已提交
683
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
684

685
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
686
    op->SetType(this->ForwardOpType() + "_grad");
H
hong 已提交
687 688 689 690
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("Bias", this->Input("Bias"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
691

H
hong 已提交
692 693 694 695
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
    op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
    op->SetAttrMap(this->Attrs());
696
  }
S
sneaxiy 已提交
697 698
};

H
hong 已提交
699 700
template <typename T>
class Conv3DGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
701
 public:
H
hong 已提交
702
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
703

704
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
705
    op->SetType(this->ForwardOpType() + "_grad");
H
hong 已提交
706 707 708
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
S
sneaxiy 已提交
709

H
hong 已提交
710 711
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
S
sneaxiy 已提交
712

H
hong 已提交
713 714
    if (this->HasInput("ResidualData")) {
      op->SetInput("ResidualData", this->Input("ResidualData"));
S
sneaxiy 已提交
715 716
    }

H
hong 已提交
717
    op->SetAttrMap(this->Attrs());
718 719 720
  }
};

Q
qingqing01 已提交
721 722 723 724
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
H
hong 已提交
725 726
template <typename T>
class Conv2DDoubleGradMaker : public framework::SingleGradOpMaker<T> {
Q
qingqing01 已提交
727
 public:
H
hong 已提交
728
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Q
qingqing01 已提交
729

730
  void Apply(GradOpPtr<T> op) const override {
Q
qingqing01 已提交
731 732
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
H
hong 已提交
733 734 735 736 737 738
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("DOutput", this->Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", this->OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter",
                 this->OutputGrad(framework::GradVarName("Filter")));
Q
qingqing01 已提交
739 740 741 742

    // ddO, dI, dW
    // Unlike grad op, double grad op does not use name@GRAD@GRAD
    // as key of ops' inputs and outputs.
H
hong 已提交
743 744
    auto ddx = this->OutputGrad(framework::GradVarName("Input"));
    auto ddw = this->OutputGrad(framework::GradVarName("Filter"));
745

L
lvmengsi 已提交
746
    op->SetOutput("DDOutput",
H
hong 已提交
747
                  ddx.empty()
748
                      ? this->EmptyInputGrad()
H
hong 已提交
749
                      : this->InputGrad(framework::GradVarName("Output")));
750 751 752 753
    op->SetOutput("DFilter", ddx.empty() ? this->EmptyInputGrad()
                                         : this->InputGrad("Filter"));
    op->SetOutput("DInput", ddw.empty() ? this->EmptyInputGrad()
                                        : this->InputGrad("Input"));
754

H
hong 已提交
755
    op->SetAttrMap(this->Attrs());
Q
qingqing01 已提交
756 757 758
  }
};

L
lvmengsi 已提交
759 760 761 762
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
H
hong 已提交
763 764
template <typename T>
class Conv3DDoubleGradMaker : public framework::SingleGradOpMaker<T> {
L
lvmengsi 已提交
765
 public:
H
hong 已提交
766
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
L
lvmengsi 已提交
767

768
  void Apply(GradOpPtr<T> op) const override {
L
lvmengsi 已提交
769 770
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
H
hong 已提交
771 772 773 774 775 776
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("DOutput", this->Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", this->OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter",
                 this->OutputGrad(framework::GradVarName("Filter")));
L
lvmengsi 已提交
777

H
hong 已提交
778 779
    auto ddx = this->OutputGrad(framework::GradVarName("Input"));
    auto ddw = this->OutputGrad(framework::GradVarName("Filter"));
L
lvmengsi 已提交
780

L
lvmengsi 已提交
781
    op->SetOutput("DDOutput",
H
hong 已提交
782
                  ddx.empty()
783
                      ? this->EmptyInputGrad()
H
hong 已提交
784
                      : this->InputGrad(framework::GradVarName("Output")));
785 786 787 788
    op->SetOutput("DFilter", ddx.empty() ? this->EmptyInputGrad()
                                         : this->InputGrad("Filter"));
    op->SetOutput("DInput", ddw.empty() ? this->EmptyInputGrad()
                                        : this->InputGrad("Input"));
L
lvmengsi 已提交
789

H
hong 已提交
790
    op->SetAttrMap(this->Attrs());
L
lvmengsi 已提交
791 792 793
  }
};

Q
qingqing01 已提交
794 795 796 797 798
void ConvOpDoubleGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto x_dims = ctx->GetInputDim("Input");
  auto w_dims = ctx->GetInputDim("Filter");
  auto do_dims = ctx->GetInputDim("DOutput");

L
lvmengsi 已提交
799 800
  if (ctx->HasOutput("DDOutput") &&
      (ctx->HasInput("DDInput") || (ctx->HasInput("DDFilter")))) {
Q
qingqing01 已提交
801 802
    ctx->SetOutputDim("DDOutput", do_dims);
  }
803
  if (ctx->HasOutput("DFilter") && ctx->HasInput("DDInput")) {
Q
qingqing01 已提交
804 805
    ctx->SetOutputDim("DFilter", w_dims);
  }
806
  if (ctx->HasOutput("DInput") && ctx->HasInput("DDFilter")) {
Q
qingqing01 已提交
807 808 809 810 811 812 813 814 815
    ctx->SetOutputDim("DInput", x_dims);
  }
}

framework::OpKernelType ConvOpDoubleGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
  framework::LibraryType library_{framework::LibraryType::kPlain};
L
liym27 已提交
816
  std::string data_format = "AnyLayout";
Q
qingqing01 已提交
817 818
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

819
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Q
qingqing01 已提交
820 821
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
L
lvmengsi 已提交
822
  }
Q
qingqing01 已提交
823
#endif
824 825 826
  auto type = framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace(),
      layout_, library_, customized_type_value);
Q
qingqing01 已提交
827 828 829
  return type;
}

C
chengduoZH 已提交
830 831 832 833
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
834
REGISTER_OPERATOR(conv2d, ops::ConvOp, ops::Conv2DOpMaker,
H
hong 已提交
835 836 837 838 839 840
                  ops::ConvOpInferVarType,
                  ops::Conv2DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(conv2d_grad, ops::ConvOpGrad,
                  ops::Conv2DDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DDoubleGradMaker<paddle::imperative::OpBase>);
Q
qingqing01 已提交
841
REGISTER_OPERATOR(conv2d_grad_grad, ops::ConvOpDoubleGrad);
842 843

// depthwise convolution op
Y
Yang Yang 已提交
844
REGISTER_OPERATOR(depthwise_conv2d, ops::ConvOp, ops::Conv2DOpMaker,
H
hong 已提交
845 846 847
                  ops::ConvOpInferVarType,
                  ops::Conv2DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DGradMaker<paddle::imperative::OpBase>);
848 849 850 851
REGISTER_OPERATOR(depthwise_conv2d_grad, ops::ConvOpGrad,
                  ops::Conv2DDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(depthwise_conv2d_grad_grad, ops::ConvOpDoubleGrad);
C
chengduo 已提交
852

Y
Yang Yang 已提交
853
REGISTER_OPERATOR(conv3d, ops::ConvOp, ops::Conv3DOpMaker,
H
hong 已提交
854 855 856 857 858 859
                  ops::ConvOpInferVarType,
                  ops::Conv3DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv3DGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(conv3d_grad, ops::ConvOpGrad,
                  ops::Conv3DDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Conv3DDoubleGradMaker<paddle::imperative::OpBase>);
L
lvmengsi 已提交
860
REGISTER_OPERATOR(conv3d_grad_grad, ops::ConvOpDoubleGrad);
C
chengduoZH 已提交
861

862 863
// depthwise conv kernel
// TODO(xingzhaolong): neon kernel for mobile
Z
zlx 已提交
864
REGISTER_OP_CPU_KERNEL(
865
    depthwise_conv2d,
X
xzl 已提交
866 867 868 869
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
870
    depthwise_conv2d_grad,
X
xzl 已提交
871 872
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
Z
zlx 已提交
873

C
chengduoZH 已提交
874
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
875 876 877 878 879 880
    conv2d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv2d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
L
lvmengsi 已提交
881 882 883 884
REGISTER_OP_CPU_KERNEL(
    conv2d_grad_grad,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
885 886

REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
887 888 889 890 891 892
    conv3d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv3d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
L
lvmengsi 已提交
893 894 895 896
REGISTER_OP_CPU_KERNEL(
    conv3d_grad_grad,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929

REGISTER_OP_VERSION(conv2d)
    .AddCheckpoint(
        R"ROC(
      Upgrade conv2d, add a new attribute [use_addto].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "use_addto",
            "In order to support new feature (inplace addto strategy) for "
            "gradient accumulation.",
            false));

REGISTER_OP_VERSION(depthwise_conv2d)
    .AddCheckpoint(
        R"ROC(
      Upgrade depthwise_conv2d, add a new attribute [use_addto].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "use_addto",
            "In order to support new feature (inplace addto strategy) for "
            "gradient accumulation.",
            false));

REGISTER_OP_VERSION(conv3d)
    .AddCheckpoint(
        R"ROC(
      Upgrade conv3d, add a new attribute [use_addto].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "use_addto",
            "In order to support new feature (inplace addto strategy) for "
            "gradient accumulation.",
            false));