test_run_program_op.py 12.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import contextlib
import unittest
import numpy as np
import six

22
import paddle
23 24 25 26
import paddle.fluid as fluid
from paddle import compat as cpt
from paddle.fluid import core, framework, executor

27 28
paddle.enable_static()

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169

@contextlib.contextmanager
def program_scope_guard():
    prog = fluid.Program()
    startup_prog = fluid.Program()
    scope = fluid.core.Scope()
    with fluid.scope_guard(scope):
        with fluid.program_guard(prog, startup_prog):
            with fluid.unique_name.guard():
                yield


# NOTE: Because RunProgramOp has a special output of type std::vector<Scope *>, 
# the OpTest cannot be used in RunProgramOp. The variable type cannot be specified
# when creating output variables in OpTest, default type is LoDTensor
# NOTE: the gradient test method in OpTest also cannot be used for RunProgramOp,
# because it hold BlockDesc type attr, OperatorFactory can't parse this attr type
# when create Operator, so here compare gradients with static graph
# NOTE: Here rewrite a simple unittest framework for RunProgramOp
class RunProgramOpTest(unittest.TestCase):
    def build_model(self):
        raise NotImplementedError(
            "RunProgramOp test should implement build_model")

    def check_output(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            # TODO: RunProgramOp is not recommended for use in static mode now
            self.expect_outs = self.run_static_model(place, is_test=True)
            self.check_output_with_place(place)

    def check_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            # TODO: RunProgramOp is not recommended for use in static mode now
            self.expect_grads = self.run_static_model(place, is_test=False)
            self.check_grad_with_place(place)

    def run_static_model(self, place, is_test=True):
        with program_scope_guard():
            startup_program = fluid.default_startup_program()
            main_program = fluid.default_main_program()

            self.build_model()

            exe = fluid.Executor(place)
            exe.run(startup_program)

            if is_test:
                fetch_list = self.output_names['Out']
            else:
                fetch_list = self.get_param_grad_names()

            outs = exe.run(main_program,
                           feed=self.inputs['X'],
                           fetch_list=fetch_list)
            return outs

    def get_program_desc(self):
        with program_scope_guard():
            fwd_op_num = self.build_model()
            return fluid.default_main_program().desc, fwd_op_num

    def prepare_attrs(self):
        return {
            'global_block': self.program_desc.block(0),
            'start_op_index': 0,
            'end_op_index': self.fwd_op_num
        }

    def get_param_grad_names(self):
        grad_names = []
        for var_name in self.inputs['Params']:
            grad_names.append(var_name + core.grad_var_suffix())
        return grad_names

    def check_output_with_place(self, place):
        # Step 1. run op
        actual_outs = self.calc_dygraph_output(place)

        # Step 2. compare output
        for expect_v, actual_v in six.moves.zip(self.expect_outs, actual_outs):
            self.assertTrue(np.allclose(expect_v, actual_v.numpy(), atol=1e-5))

    def check_grad_with_place(self, place):
        # Step 1. calc grads
        actual_grads = self.calc_dygraph_grad(place)

        # Step 2. compare grads
        for expect_v, actual_v in six.moves.zip(self.expect_grads,
                                                actual_grads):
            np.testing.assert_array_almost_equal(expect_v, actual_v)
            self.assertTrue(np.allclose(expect_v, actual_v, atol=1e-5))

    def prepare_dygraph_input(self, place, return_param_list=False):
        def create_var_base(is_input, name, np_value, stop_gradient):
            var = core.VarBase(
                value=np_value, name=name, place=place, zero_copy=True)
            var.stop_gradient = stop_gradient
            return var

        # build inputs
        inputs = {}
        param_list = []
        inputs['X'] = []
        for name, np_value in self.inputs['X'].items():
            var = create_var_base(True, name, np_value, True)
            inputs['X'].append(var)
        inputs['Params'] = []
        for name, np_value in self.inputs['Params'].items():
            var = create_var_base(True, name, np_value, False)
            inputs['Params'].append(var)
            if return_param_list:
                param_list.append(var)

        if return_param_list:
            return inputs, param_list
        return inputs

    def prepare_dygraph_output(self):
        def create_var_base(is_input, name):
            var = framework._varbase_creator(dtype=None, shape=None, name=name)
            var.stop_gradient = False
            return var

        # build outputs
        outputs = {}
        outputs['Out'] = []
        for name in self.output_names['Out']:
            outputs['Out'].append(create_var_base(False, name))

        outputs['OutScope'] = framework._varbase_creator(
            type=core.VarDesc.VarType.STEP_SCOPES,
            name="program_out_scope",
            persistable=True)
        inner_scope = core.Scope()
        outputs['OutScope'].value().set_scope(inner_scope)
170 171

        outputs['DOut'] = [create_var_base(False, "Fake_var")]
172 173 174
        return outputs

    def calc_dygraph_output(self, place):
175 176 177
        self.program_desc, self.fwd_op_num = self.get_program_desc()
        self.attrs = self.prepare_attrs()

178 179 180 181 182 183 184 185 186 187 188 189
        with fluid.dygraph.guard(place):
            inputs = self.prepare_dygraph_input(place)
            outputs = self.prepare_dygraph_output()

            framework._dygraph_tracer().trace_op(
                type=self.op_type,
                inputs=inputs,
                outputs=outputs,
                attrs=self.attrs)
            return outputs['Out']

    def calc_dygraph_grad(self, place):
190 191 192
        self.program_desc, self.fwd_op_num = self.get_program_desc()
        self.attrs = self.prepare_attrs()

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
        with fluid.dygraph.guard(place):
            # Step 1. run forward
            inputs, input_param_list = self.prepare_dygraph_input(place, True)
            outputs = self.prepare_dygraph_output()

            framework._dygraph_tracer().trace_op(
                type=self.op_type,
                inputs=inputs,
                outputs=outputs,
                attrs=self.attrs)

            for param in input_param_list:
                var_type = self._get_grad_vartype(param.name)
                if var_type is None:
                    continue
                param._set_grad_type(var_type)

            # Step 2. run backward
            # NOTE: in unittest, only support single output now
            actual_outs = outputs['Out']
            assert len(actual_outs) == 1
            actual_outs[0].backward()

            # Step 3. prepare grads
            grads = []
            for param in input_param_list:
                grad = param.gradient()
                grads.append(grad)
            return grads

    def _get_grad_vartype(self, name):
        assert self.program_desc is not None
        grad_name = name + core.grad_var_suffix()
        for i in six.moves.range(self.program_desc.num_blocks()):
            block = self.program_desc.block(i)
            var_desc = block.find_var_recursive(cpt.to_bytes(grad_name))
            return var_desc.type() if var_desc is not None else None


class TestRunProgramOpWithFC(RunProgramOpTest):
    def setUp(self):
        self.op_type = "run_program"
        self.dtype = np.float32
        self.input_names = {
            'X': ['img'],
            'Params': ['weight_param', 'bias_param']
        }
        self.output_names = {'Out': ['fc_0.tmp_2']}

        self.inputs = {
            'X': {
                self.input_names['X'][0]: np.random.random((32, 1, 28, 28))
                .astype(self.dtype)
            },
            'Params': {
                self.input_names['Params'][0]: np.random.random(
                    (784, 10)).astype(self.dtype),
                self.input_names['Params'][1]: np.random.random(
                    (32, 10)).astype(self.dtype)
            }
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad()

    def build_model(self):
        # 1. simple model
        img = fluid.data(
            name=self.input_names['X'][0],
            shape=[None, 1, 28, 28],
            dtype='float32')
        weight_attr = fluid.ParamAttr(
            name=self.input_names['Params'][0],
            learning_rate=0.5,
            initializer=fluid.initializer.NumpyArrayInitializer(self.inputs[
                'Params'][self.input_names['Params'][0]]),
            trainable=True)
        bias_attr = fluid.ParamAttr(
            name=self.input_names['Params'][1],
            learning_rate=0.5,
            initializer=fluid.initializer.NumpyArrayInitializer(self.inputs[
                'Params'][self.input_names['Params'][1]]),
            trainable=True)
        pred = fluid.layers.fc(input=img,
                               size=10,
                               param_attr=weight_attr,
                               bias_attr=bias_attr,
                               act='relu')
        # 2. get forward op num
        fwd_op_num = fluid.default_main_program().global_block().desc.op_size()
        # 3. append backward
        grads = fluid.backward.gradients(targets=[pred], inputs=[img])

        return fwd_op_num


class TestRunProgramOpWithEmbedding(RunProgramOpTest):
    def setUp(self):
        self.op_type = "run_program"
        self.dtype = np.float32
        self.input_names = {'X': ['x'], 'Params': ['emb_weight']}
        self.output_names = {'Out': ['reduce_sum_0.tmp_0']}

        self.inputs = {
            'X': {
                'x': np.array([[1, 3, 0, 4, 7]]).astype("int64")
            },
            'Params': {
                'emb_weight': np.random.random(size=(10, 16)).astype("float32")
            }
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        # NOTE: fecth not support SelectedRows, catnot compare 
        # sparse gradients with staic mode, only run dygraph
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            # TODO: RunProgramOp is not recommended for use in static mode now
            self.calc_dygraph_grad(place)

    def build_model(self):
        # 1. simple model
        x = fluid.layers.data(
            name=self.input_names['X'][0], shape=[5], dtype='int64')
        emb = fluid.input.embedding(
            input=x,
            size=[10, 16],
            param_attr=fluid.ParamAttr(
                name="emb_weight",
                learning_rate=10,
                initializer=fluid.initializer.NumpyArrayInitializer(self.inputs[
                    'Params'][self.input_names['Params'][0]])),
            is_sparse=True)
        y = fluid.layers.reduce_sum(emb, dim=-1)
        # 2. get forward op num
        fwd_op_num = fluid.default_main_program().global_block().desc.op_size()
        # 3. append backward
        grads = fluid.backward.gradients(targets=[y], inputs=[x])

        return fwd_op_num


if __name__ == "__main__":
    unittest.main()