pybind.cc 41.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
27
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
28 29 30
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
Y
Yi Wang 已提交
35
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
36
#include "paddle/fluid/framework/version.h"
Y
Refine  
Yu Yang 已提交
37
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
D
dzhwinter 已提交
38
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
39
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
40
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
41
#include "paddle/fluid/platform/enforce.h"
42
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
43 44
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
45
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
46 47
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
X
Xin Pan 已提交
48
#include "paddle/fluid/pybind/imperative.h"
49 50
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
51
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
52
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
53

54
#include "paddle/fluid/string/to_string.h"
55

D
Dong Zhihong 已提交
56
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
57
#ifndef _WIN32
Y
Yi Wang 已提交
58
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
59
#endif
Y
Yi Wang 已提交
60 61
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
62 63
#endif

M
minqiyang 已提交
64 65
#include "pybind11/stl.h"

66 67 68 69
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
70 71 72
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

73
namespace paddle {
74
namespace pybind {
75
bool IsCompiledWithCUDA() {
76
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
77 78 79 80 81 82
  return false;
#else
  return true;
#endif
}

Y
update  
Yancey1989 已提交
83
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
84
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
85 86 87 88 89 90
  return true;
#else
  return false;
#endif
}

91
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
92 93 94
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
95
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
96
  m.doc() = "C++ core of PaddlePaddle";
97

98 99 100 101
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

102
  BindException(&m);
Y
Yu Yang 已提交
103

X
Xin Pan 已提交
104 105
  py::class_<imperative::VarBase>(m, "VarBase",
                                  R"DOC()DOC")
X
Xin Pan 已提交
106 107
      .def_property(
          "desc",
X
Xin Pan 已提交
108 109
          [](const imperative::VarBase &self) { return self.var_desc_; },
          [](imperative::VarBase &self, framework::VarDesc *var_desc) {
X
Xin Pan 已提交
110 111 112 113
            self.var_desc_ = var_desc;
          },
          py::return_value_policy::reference);

X
Xin Pan 已提交
114 115 116 117 118 119 120 121 122
  py::class_<imperative::OpBase>(m, "OpBase",
                                 R"DOC()DOC")
      .def_property(
          "desc", [](const imperative::OpBase &self) { return self.op_desc_; },
          [](imperative::OpBase &self, framework::OpDesc *op_desc) {
            self.op_desc_ = op_desc;
          },
          py::return_value_policy::reference);

X
Xin Pan 已提交
123 124
  py::class_<imperative::Layer, PyLayer /* <--- trampoline*/> layer(m, "Layer");
  layer.def(py::init<>())
X
Xin Pan 已提交
125 126
      .def("forward",
           [](imperative::Layer &self,
X
Xin Pan 已提交
127
              const std::vector<imperative::VarBase> &inputs) {
X
Xin Pan 已提交
128 129
             return self.Forward(inputs);
           })
X
Xin Pan 已提交
130
      .def("backward", &imperative::Layer::Backward);
X
Xin Pan 已提交
131
  BindTracer(&m);
X
Xin Pan 已提交
132

133 134 135
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
136
      .def("_get_dims",
137
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
138
      .def("_set_dims",
Q
qijun 已提交
139
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
140
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
141
           })
Y
yuyang18 已提交
142
      .def("_set_layout",
D
dzhwinter 已提交
143 144 145
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
146
      .def("_alloc_float",
D
dzhwinter 已提交
147
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
148
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
149
           })
Y
yuyang18 已提交
150
      .def("_alloc_float",
Y
Yu Yang 已提交
151
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
152
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
153
           })
Y
yuyang18 已提交
154
      .def("_alloc_int",
Y
Yu Yang 已提交
155
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
156
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
157
           })
Y
yuyang18 已提交
158
      .def("_alloc_int",
D
dzhwinter 已提交
159
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
160
             self.mutable_data<int>(place);
Q
qijun 已提交
161
           })
Y
yuyang18 已提交
162
      .def("_alloc_int",
C
chengduoZH 已提交
163 164 165
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
166
      .def("_alloc_float",
C
chengduoZH 已提交
167 168 169
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
170 171
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
172
      .def("set", PyCPUTensorSetFromArray<double>)
173
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
174
      .def("set", PyCPUTensorSetFromArray<bool>)
175
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
176
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
177
      .def("set", PyCPUTensorSetFromArray<int8_t>)
178
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
179 180
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
181
      .def("set", PyCUDATensorSetFromArray<double>)
182
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
183
      .def("set", PyCUDATensorSetFromArray<bool>)
184
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
185
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
186
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
187 188 189 190 191 192
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
193
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
194
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
195
#endif
196
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
197 198 199 200 201
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
      .def("_dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
202

X
Xin Pan 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
216
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
217
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
218
     columns, hence [5, 2].
X
Xin Pan 已提交
219 220 221

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
222 223
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
247 248
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
249 250 251 252 253 254 255 256 257 258 259 260 261 262
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
263
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
264 265 266 267 268
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
269
      .def("set_lod",
270
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
271
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
272
             LoD new_lod;
273 274
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
275 276
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
277
             self.set_lod(new_lod);
D
dangqingqing 已提交
278
           })
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
           })
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
G
gongweibao 已提交
304
      // Set above comments of set_lod.
305 306 307 308 309 310 311 312 313 314 315 316 317
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
      .def("has_valid_recursive_sequence_lengths", [](LoDTensor &self) -> bool {
        // Check that the lod info is valid and match the outermost
        // dimension of the LoDTensor data
        return CheckLoD(self.lod(), vectorize(self.dims()).front());
D
dangqingqing 已提交
318 319
      });

Q
qijun 已提交
320 321 322 323 324 325 326 327 328 329 330 331 332
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
333 334 335 336 337 338 339 340 341
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
342
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
343
      .def("rows", [](SelectedRows &self) {
344 345 346 347 348
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
349
      });
Q
qijun 已提交
350

351
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
352 353 354

All parameter, weight, gradient are variables in Paddle.
)DOC")
355
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
356
      .def("set_int",
357 358
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
359 360 361 362 363 364 365
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
366
      .def("get_tensor",
367 368
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
369 370
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
371 372 373
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
374 375 376 377 378
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
379 380 381
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
382
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
383 384 385 386 387
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
388
#endif
Y
Refine  
Yu Yang 已提交
389 390 391 392 393
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
394
           py::return_value_policy::reference);
395

Y
Refine  
Yu Yang 已提交
396
  py::class_<framework::ReaderHolder>(m, "Reader", "")
397
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
398

S
sneaxiy 已提交
399 400 401 402
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
403 404
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
405
      .def("push",
S
sneaxiy 已提交
406
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
407
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
408
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
409
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
410
           })
S
sneaxiy 已提交
411 412 413 414
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
415

S
sneaxiy 已提交
416
  m.def("init_lod_tensor_blocking_queue",
S
sneaxiy 已提交
417
        [](Variable &var, size_t capacity,
S
sneaxiy 已提交
418
           const std::vector<std::vector<int64_t>> &shapes)
S
sneaxiy 已提交
419
            -> std::shared_ptr<LoDTensorBlockingQueue> {
S
sneaxiy 已提交
420 421 422 423 424 425
              std::vector<DDim> dims(shapes.size());
              std::transform(shapes.begin(), shapes.end(), dims.begin(),
                             [](const std::vector<int64_t> &shape) {
                               return make_ddim(shape);
                             });
              auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
426 427
              holder->InitOnce(capacity, dims,
                               FLAGS_reader_queue_speed_test_mode);
S
sneaxiy 已提交
428
              return holder->GetQueue();
S
sneaxiy 已提交
429
            },
S
sneaxiy 已提交
430
        py::return_value_policy::copy);
S
sneaxiy 已提交
431

Q
Qiao Longfei 已提交
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
  py::class_<Scope>(m, "Scope", R"DOC(
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
D
dongzhihong 已提交
452
      .def("var",
453
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
454
             return self.Var(name);
Y
Yu Yang 已提交
455
           },
456
           py::return_value_policy::reference)
457
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
458
      .def(py::init<>())
459
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
460
           py::return_value_policy::reference)
Y
Yu Yang 已提交
461
      .def("drop_kids", &Scope::DropKids);
462

Y
Yu Yang 已提交
463 464
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
465 466
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
467 468 469 470 471 472 473 474 475 476
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
477 478
    return ret_values;
  });
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
495
  m.def("prune", [](const ProgramDesc &origin,
496
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
497
    ProgramDesc prog_with_targets(origin);
498
    for (const auto &t : targets) {
499
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
500
    }
501
    proto::ProgramDesc pruned_desc;
502
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
503
    return new ProgramDesc(pruned_desc);
504
  });
505 506 507 508
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
509 510 511
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
512 513
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
514
  // clang-format off
Y
Yu Yang 已提交
515
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
516 517
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
518
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
519 520 521
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
522
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
523
                      -> paddle::platform::DeviceContext* {
524
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
525
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
526
#else
Q
qijun 已提交
527
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
528
#endif
C
chengduoZH 已提交
529 530 531 532 533 534 535 536 537 538 539
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
540
// clang-format on
P
peizhilin 已提交
541
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
542 543
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
544
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
545
      .def(py::init<int>())
D
dzhwinter 已提交
546
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
547

548 549 550
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
551

C
chengduoZH 已提交
552 553 554 555
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
556 557 558 559 560 561 562
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
563
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
564
             self = gpu_place;
C
chengduoZH 已提交
565 566
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
567 568
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
569
      });
Y
Yu Yang 已提交
570

Y
Yu Yang 已提交
571 572 573
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
574
                    proto::OpDesc desc;
Y
Yu Yang 已提交
575 576 577 578 579
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
580
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
581
                  })
582
      .def("run",
583
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
584 585 586
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
587
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
588 589 590 591 592
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
593 594 595 596 597 598 599
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
600 601
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
602
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
603
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
604 605 606 607
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
608

F
fengjiayi 已提交
609
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
610
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
611
      .def("close", &Executor::Close)
S
sneaxiy 已提交
612 613 614 615 616
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
617

D
dzhwinter 已提交
618
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
619
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
620 621
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
622

623
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
Y
update  
Yancey1989 已提交
624
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
625 626 627 628 629 630
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
631

632
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
633
  m.def("get_fetch_variable", framework::GetFetchVariable);
X
Xin Pan 已提交
634
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
635

X
Xin Pan 已提交
636 637
  m.def("_is_program_version_supported", IsProgramVersionSupported);

638 639 640 641 642
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
643

Y
Yu Yang 已提交
644 645 646 647 648 649 650 651 652
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
653
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
654 655
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

D
dzhwinter 已提交
672 673 674
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
675
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
676
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
677
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
678

P
peizhilin 已提交
679
#ifndef _WIN32
D
dangqingqing 已提交
680 681 682
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
683
#endif
P
peizhilin 已提交
684
#endif
Y
Yu Yang 已提交
685

686 687 688 689
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
690
      .value("kAll", platform::ProfilerState::kAll)
691 692 693 694 695 696 697 698 699 700 701 702 703
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
704
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
705
  m.def("reset_profiler", platform::ResetProfiler);
Y
Yu Yang 已提交
706

707 708
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
709 710 711 712 713
      .def(
          "set_str",
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
X
Xin Pan 已提交
714 715 716
      .def("set_int", [](ir::Pass &self, const std::string &name,
                         int val) { self.Set<const int>(name, new int(val)); })
      .def("type", &ir::Pass::Type);
717

X
fix  
Xin Pan 已提交
718 719
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
720 721 722 723 724 725 726 727 728 729 730 731 732 733
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
734
  // -- python binds for parallel executor.
Y
yuyang18 已提交
735
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
736 737 738 739
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
740 741 742 743 744 745 746 747 748 749 750
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
751 752 753

        )DOC");

Y
yuyang18 已提交
754
  exec_strategy.def(py::init())
Y
yuyang18 已提交
755 756 757 758 759
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
760 761 762 763 764 765 766 767 768 769
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
770
      .def_property(
771 772 773 774
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
775 776 777 778
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
779 780 781 782 783
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
784 785 786 787
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
788 789 790 791 792 793 794
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
795 796 797 798 799 800 801 802 803 804 805
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
806 807 808 809 810 811
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
812

Y
yuyang18 已提交
813
  exec_strategy.def_property(
Y
yuyang18 已提交
814 815 816 817 818 819 820
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
821 822
      });

C
chengduo 已提交
823 824 825 826
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
827 828 829 830 831 832 833 834 835 836 837
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
838
)DOC");
Y
yuyang18 已提交
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
855
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
856
            self.reduce_ = strategy;
C
chengduo 已提交
857 858 859 860 861 862 863
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
864 865 866 867 868
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
869
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
870
            self.gradient_scale_ = strategy;
C
chengduo 已提交
871 872 873 874 875 876
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
877 878 879 880
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
881
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
882
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
883 884 885 886
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
F
fengjiayi 已提交
887 888 889
      .def_property(
          "enable_data_balance",
          [](const BuildStrategy &self) { return self.enable_data_balance_; },
C
chengduo 已提交
890
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
891
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
892 893
            self.enable_data_balance_ = b;
          })  // FIXME(chengudo): enable_data_balance seems not important
S
sneaxiy 已提交
894 895 896 897 898 899
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
900
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
901 902 903 904 905 906 907 908 909
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
910
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
911 912 913
            self.remove_unnecessary_lock_ = b;
          },
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default False.)DOC")
914 915 916 917 918 919
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
C
chengduo 已提交
920 921 922 923 924 925
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
926
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
927 928 929 930 931
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
932
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
933
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
934 935 936 937 938
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
939 940 941 942

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
943
                  const std::string &, Scope *, std::vector<Scope *> &,
944 945
                  const ExecutionStrategy &, const BuildStrategy &, size_t,
                  size_t>())
Y
Yu Yang 已提交
946 947 948 949
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
950 951 952 953 954
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
955 956 957 958
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
959 960 961 962 963 964
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
965

966
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
967
  BindAsyncExecutor(&m);
L
Luo Tao 已提交
968
}
969
}  // namespace pybind
970
}  // namespace paddle