common_graph_table.h 18.6 KB
Newer Older
S
seemingwang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <ThreadPool.h>
#include <assert.h>
#include <pthread.h>
S
seemingwang 已提交
20 21 22 23 24 25
#include <algorithm>
#include <cassert>
#include <cstdio>
#include <ctime>
#include <functional>
#include <iostream>
S
seemingwang 已提交
26
#include <list>
S
seemingwang 已提交
27
#include <map>
S
seemingwang 已提交
28 29
#include <memory>
#include <mutex>  // NOLINT
S
seemingwang 已提交
30 31 32
#include <numeric>
#include <queue>
#include <set>
S
seemingwang 已提交
33
#include <string>
S
seemingwang 已提交
34
#include <thread>
S
seemingwang 已提交
35
#include <unordered_map>
S
seemingwang 已提交
36
#include <unordered_set>
S
seemingwang 已提交
37 38
#include <utility>
#include <vector>
39 40
#include "paddle/fluid/distributed/ps/table/accessor.h"
#include "paddle/fluid/distributed/ps/table/common_table.h"
41
#include "paddle/fluid/distributed/ps/table/graph/class_macro.h"
42
#include "paddle/fluid/distributed/ps/table/graph/graph_node.h"
S
seemingwang 已提交
43
#include "paddle/fluid/string/string_helper.h"
44
#include "paddle/phi/core/utils/rw_lock.h"
45

46 47 48
#ifdef PADDLE_WITH_HETERPS
#include "paddle/fluid/framework/fleet/heter_ps/gpu_graph_node.h"
#endif
S
seemingwang 已提交
49 50 51 52 53 54
namespace paddle {
namespace distributed {
class GraphShard {
 public:
  size_t get_size();
  GraphShard() {}
55
  ~GraphShard();
S
seemingwang 已提交
56 57
  std::vector<Node *> &get_bucket() { return bucket; }
  std::vector<Node *> get_batch(int start, int end, int step);
58 59
  std::vector<int64_t> get_ids_by_range(int start, int end) {
    std::vector<int64_t> res;
60
    for (int i = start; i < end && i < (int)bucket.size(); i++) {
S
seemingwang 已提交
61 62 63 64
      res.push_back(bucket[i]->get_id());
    }
    return res;
  }
S
seemingwang 已提交
65

66
  GraphNode *add_graph_node(int64_t id);
67
  GraphNode *add_graph_node(Node *node);
68 69 70
  FeatureNode *add_feature_node(int64_t id);
  Node *find_node(int64_t id);
  void delete_node(int64_t id);
71
  void clear();
72 73
  void add_neighbor(int64_t id, int64_t dst_id, float weight);
  std::unordered_map<int64_t, int> &get_node_location() {
S
seemingwang 已提交
74 75 76 77
    return node_location;
  }

 private:
78
  std::unordered_map<int64_t, int> node_location;
S
seemingwang 已提交
79 80
  std::vector<Node *> bucket;
};
S
seemingwang 已提交
81 82 83 84

enum LRUResponse { ok = 0, blocked = 1, err = 2 };

struct SampleKey {
85
  int64_t node_key;
S
seemingwang 已提交
86
  size_t sample_size;
87
  bool is_weighted;
88
  SampleKey(int64_t _node_key, size_t _sample_size, bool _is_weighted)
89 90 91
      : node_key(_node_key),
        sample_size(_sample_size),
        is_weighted(_is_weighted) {}
S
seemingwang 已提交
92
  bool operator==(const SampleKey &s) const {
93 94
    return node_key == s.node_key && sample_size == s.sample_size &&
           is_weighted == s.is_weighted;
S
seemingwang 已提交
95 96 97 98 99 100
  }
};

class SampleResult {
 public:
  size_t actual_size;
101 102 103 104 105 106 107
  std::shared_ptr<char> buffer;
  SampleResult(size_t _actual_size, std::shared_ptr<char> &_buffer)
      : actual_size(_actual_size), buffer(_buffer) {}
  SampleResult(size_t _actual_size, char *_buffer)
      : actual_size(_actual_size),
        buffer(_buffer, [](char *p) { delete[] p; }) {}
  ~SampleResult() {}
S
seemingwang 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121
};

template <typename K, typename V>
class LRUNode {
 public:
  LRUNode(K _key, V _data, size_t _ttl) : key(_key), data(_data), ttl(_ttl) {
    next = pre = NULL;
  }
  K key;
  V data;
  size_t ttl;
  // time to live
  LRUNode<K, V> *pre, *next;
};
122
template <typename K, typename V>
S
seemingwang 已提交
123 124
class ScaledLRU;

125
template <typename K, typename V>
S
seemingwang 已提交
126 127
class RandomSampleLRU {
 public:
128 129 130
  RandomSampleLRU(ScaledLRU<K, V> *_father) {
    father = _father;
    remove_count = 0;
S
seemingwang 已提交
131 132 133
    node_size = 0;
    node_head = node_end = NULL;
    global_ttl = father->ttl;
134
    total_diff = 0;
S
seemingwang 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147
  }

  ~RandomSampleLRU() {
    LRUNode<K, V> *p;
    while (node_head != NULL) {
      p = node_head->next;
      delete node_head;
      node_head = p;
    }
  }
  LRUResponse query(K *keys, size_t length, std::vector<std::pair<K, V>> &res) {
    if (pthread_rwlock_tryrdlock(&father->rwlock) != 0)
      return LRUResponse::blocked;
148 149 150 151 152 153 154 155 156 157 158 159 160 161
    // pthread_rwlock_rdlock(&father->rwlock);
    int init_size = node_size - remove_count;
    process_redundant(length * 3);

    for (size_t i = 0; i < length; i++) {
      auto iter = key_map.find(keys[i]);
      if (iter != key_map.end()) {
        res.emplace_back(keys[i], iter->second->data);
        iter->second->ttl--;
        if (iter->second->ttl == 0) {
          remove(iter->second);
          if (remove_count != 0) remove_count--;
        } else {
          move_to_tail(iter->second);
S
seemingwang 已提交
162 163
        }
      }
164 165 166 167 168
    }
    total_diff += node_size - remove_count - init_size;
    if (total_diff >= 500 || total_diff < -500) {
      father->handle_size_diff(total_diff);
      total_diff = 0;
S
seemingwang 已提交
169 170 171 172 173 174 175
    }
    pthread_rwlock_unlock(&father->rwlock);
    return LRUResponse::ok;
  }
  LRUResponse insert(K *keys, V *data, size_t length) {
    if (pthread_rwlock_tryrdlock(&father->rwlock) != 0)
      return LRUResponse::blocked;
176 177 178 179 180 181 182 183 184 185 186 187
    // pthread_rwlock_rdlock(&father->rwlock);
    int init_size = node_size - remove_count;
    process_redundant(length * 3);
    for (size_t i = 0; i < length; i++) {
      auto iter = key_map.find(keys[i]);
      if (iter != key_map.end()) {
        move_to_tail(iter->second);
        iter->second->ttl = global_ttl;
        iter->second->data = data[i];
      } else {
        LRUNode<K, V> *temp = new LRUNode<K, V>(keys[i], data[i], global_ttl);
        add_new(temp);
S
seemingwang 已提交
188 189
      }
    }
190 191 192 193 194 195
    total_diff += node_size - remove_count - init_size;
    if (total_diff >= 500 || total_diff < -500) {
      father->handle_size_diff(total_diff);
      total_diff = 0;
    }

S
seemingwang 已提交
196 197 198
    pthread_rwlock_unlock(&father->rwlock);
    return LRUResponse::ok;
  }
199 200
  void remove(LRUNode<K, V> *node) {
    fetch(node);
S
seemingwang 已提交
201
    node_size--;
202 203
    key_map.erase(node->key);
    delete node;
204 205 206
  }

  void process_redundant(int process_size) {
207
    int length = std::min(remove_count, process_size);
208 209 210
    while (length--) {
      remove(node_head);
      remove_count--;
S
seemingwang 已提交
211
    }
212
    // std::cerr<<"after remove_count = "<<remove_count<<std::endl;
S
seemingwang 已提交
213 214
  }

215 216 217 218 219 220 221 222 223 224 225 226
  void move_to_tail(LRUNode<K, V> *node) {
    fetch(node);
    place_at_tail(node);
  }

  void add_new(LRUNode<K, V> *node) {
    node->ttl = global_ttl;
    place_at_tail(node);
    node_size++;
    key_map[node->key] = node;
  }
  void place_at_tail(LRUNode<K, V> *node) {
S
seemingwang 已提交
227 228 229 230 231 232 233 234 235 236 237
    if (node_end == NULL) {
      node_head = node_end = node;
      node->next = node->pre = NULL;
    } else {
      node_end->next = node;
      node->pre = node_end;
      node->next = NULL;
      node_end = node;
    }
  }

238 239 240 241 242 243 244 245 246 247 248 249 250
  void fetch(LRUNode<K, V> *node) {
    if (node->pre) {
      node->pre->next = node->next;
    } else {
      node_head = node->next;
    }
    if (node->next) {
      node->next->pre = node->pre;
    } else {
      node_end = node->pre;
    }
  }

S
seemingwang 已提交
251
 private:
252 253
  std::unordered_map<K, LRUNode<K, V> *> key_map;
  ScaledLRU<K, V> *father;
254
  size_t global_ttl, size_limit;
255
  int node_size, total_diff;
S
seemingwang 已提交
256
  LRUNode<K, V> *node_head, *node_end;
257
  friend class ScaledLRU<K, V>;
258
  int remove_count;
S
seemingwang 已提交
259 260
};

261
template <typename K, typename V>
S
seemingwang 已提交
262 263
class ScaledLRU {
 public:
264
  ScaledLRU(size_t _shard_num, size_t size_limit, size_t _ttl)
S
seemingwang 已提交
265
      : size_limit(size_limit), ttl(_ttl) {
266
    shard_num = _shard_num;
S
seemingwang 已提交
267 268 269 270
    pthread_rwlock_init(&rwlock, NULL);
    stop = false;
    thread_pool.reset(new ::ThreadPool(1));
    global_count = 0;
271 272
    lru_pool = std::vector<RandomSampleLRU<K, V>>(shard_num,
                                                  RandomSampleLRU<K, V>(this));
S
seemingwang 已提交
273 274 275 276
    shrink_job = std::thread([this]() -> void {
      while (true) {
        {
          std::unique_lock<std::mutex> lock(mutex_);
277
          cv_.wait_for(lock, std::chrono::milliseconds(20000));
S
seemingwang 已提交
278 279 280 281 282
          if (stop) {
            return;
          }
        }
        auto status =
Z
zhaocaibei123 已提交
283
            thread_pool->enqueue([this]() -> int { return Shrink(); });
S
seemingwang 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
        status.wait();
      }
    });
    shrink_job.detach();
  }
  ~ScaledLRU() {
    std::unique_lock<std::mutex> lock(mutex_);
    stop = true;
    cv_.notify_one();
  }
  LRUResponse query(size_t index, K *keys, size_t length,
                    std::vector<std::pair<K, V>> &res) {
    return lru_pool[index].query(keys, length, res);
  }
  LRUResponse insert(size_t index, K *keys, V *data, size_t length) {
    return lru_pool[index].insert(keys, data, length);
  }
Z
zhaocaibei123 已提交
301
  int Shrink() {
S
seemingwang 已提交
302 303
    int node_size = 0;
    for (size_t i = 0; i < lru_pool.size(); i++) {
304
      node_size += lru_pool[i].node_size - lru_pool[i].remove_count;
S
seemingwang 已提交
305 306
    }

307
    if ((size_t)node_size <= size_t(1.1 * size_limit) + 1) return 0;
S
seemingwang 已提交
308
    if (pthread_rwlock_wrlock(&rwlock) == 0) {
309 310 311 312
      global_count = 0;
      for (size_t i = 0; i < lru_pool.size(); i++) {
        global_count += lru_pool[i].node_size - lru_pool[i].remove_count;
      }
313
      if ((size_t)global_count > size_limit) {
314
        size_t remove = global_count - size_limit;
315
        for (size_t i = 0; i < lru_pool.size(); i++) {
316 317 318 319
          lru_pool[i].total_diff = 0;
          lru_pool[i].remove_count +=
              1.0 * (lru_pool[i].node_size - lru_pool[i].remove_count) /
              global_count * remove;
S
seemingwang 已提交
320 321 322 323 324 325 326
        }
      }
      pthread_rwlock_unlock(&rwlock);
      return 0;
    }
    return 0;
  }
327

S
seemingwang 已提交
328 329 330
  void handle_size_diff(int diff) {
    if (diff != 0) {
      __sync_fetch_and_add(&global_count, diff);
331
      if (global_count > int(1.25 * size_limit)) {
Z
zhaocaibei123 已提交
332
        thread_pool->enqueue([this]() -> int { return Shrink(); });
S
seemingwang 已提交
333 334 335 336 337 338 339 340
      }
    }
  }

  size_t get_ttl() { return ttl; }

 private:
  pthread_rwlock_t rwlock;
341
  size_t shard_num;
S
seemingwang 已提交
342
  int global_count;
343
  size_t size_limit, total, hit;
S
seemingwang 已提交
344 345 346
  size_t ttl;
  bool stop;
  std::thread shrink_job;
347
  std::vector<RandomSampleLRU<K, V>> lru_pool;
S
seemingwang 已提交
348 349 350
  mutable std::mutex mutex_;
  std::condition_variable cv_;
  std::shared_ptr<::ThreadPool> thread_pool;
351
  friend class RandomSampleLRU<K, V>;
S
seemingwang 已提交
352 353
};

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
#ifdef PADDLE_WITH_HETERPS
enum GraphSamplerStatus { waiting = 0, running = 1, terminating = 2 };
class GraphTable;
class GraphSampler {
 public:
  GraphSampler() {
    status = GraphSamplerStatus::waiting;
    thread_pool.reset(new ::ThreadPool(1));
    callback = [](std::vector<paddle::framework::GpuPsCommGraph> &res) {
      return;
    };
  }
  virtual int run_graph_sampling() = 0;
  virtual int start_graph_sampling() {
    if (status != GraphSamplerStatus::waiting) {
      return -1;
    }
    std::promise<int> prom;
    std::future<int> fut = prom.get_future();
    graph_sample_task_over = thread_pool->enqueue([&prom, this]() {
      prom.set_value(0);
      status = GraphSamplerStatus::running;
      return run_graph_sampling();
    });
    return fut.get();
  }
  virtual void init(size_t gpu_num, GraphTable *graph_table,
                    std::vector<std::string> args) = 0;
  virtual void set_graph_sample_callback(
      std::function<void(std::vector<paddle::framework::GpuPsCommGraph> &)>
          callback) {
    this->callback = callback;
  }

  virtual int end_graph_sampling() {
    if (status == GraphSamplerStatus::running) {
      status = GraphSamplerStatus::terminating;
      return graph_sample_task_over.get();
    }
    return -1;
  }
  virtual GraphSamplerStatus get_graph_sampler_status() { return status; }

 protected:
  std::function<void(std::vector<paddle::framework::GpuPsCommGraph> &)>
      callback;
  std::shared_ptr<::ThreadPool> thread_pool;
  GraphSamplerStatus status;
  std::future<int> graph_sample_task_over;
  std::vector<paddle::framework::GpuPsCommGraph> sample_res;
};
#endif

407
class GraphTable : public Table {
S
seemingwang 已提交
408
 public:
409 410 411 412 413 414 415 416
  GraphTable() {
    use_cache = false;
    shard_num = 0;
#ifdef PADDLE_WITH_HETERPS
    gpups_mode = false;
#endif
    rw_lock.reset(new pthread_rwlock_t());
  }
417
  virtual ~GraphTable();
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434

  virtual void *GetShard(size_t shard_idx) { return 0; }

  static int32_t sparse_local_shard_num(uint32_t shard_num,
                                        uint32_t server_num) {
    if (shard_num % server_num == 0) {
      return shard_num / server_num;
    }
    size_t local_shard_num = shard_num / server_num + 1;
    return local_shard_num;
  }

  static size_t get_sparse_shard(uint32_t shard_num, uint32_t server_num,
                                 uint64_t key) {
    return (key % shard_num) / sparse_local_shard_num(shard_num, server_num);
  }

S
seemingwang 已提交
435 436 437 438 439
  virtual int32_t pull_graph_list(int start, int size,
                                  std::unique_ptr<char[]> &buffer,
                                  int &actual_size, bool need_feature,
                                  int step);

440
  virtual int32_t random_sample_neighbors(
441
      int64_t *node_ids, int sample_size,
442
      std::vector<std::shared_ptr<char>> &buffers,
443
      std::vector<int> &actual_sizes, bool need_weight);
S
seemingwang 已提交
444 445 446 447 448

  int32_t random_sample_nodes(int sample_size, std::unique_ptr<char[]> &buffers,
                              int &actual_sizes);

  virtual int32_t get_nodes_ids_by_ranges(
449
      std::vector<std::pair<int, int>> ranges, std::vector<int64_t> &res);
Z
zhaocaibei123 已提交
450 451
  virtual int32_t Initialize() { return 0; }
  virtual int32_t Initialize(const TableParameter &config,
452
                             const FsClientParameter &fs_config);
Z
zhaocaibei123 已提交
453 454
  virtual int32_t Initialize(const GraphParameter &config);
  int32_t Load(const std::string &path, const std::string &param);
455
  int32_t load_graph_split_config(const std::string &path);
S
seemingwang 已提交
456 457 458 459 460

  int32_t load_edges(const std::string &path, bool reverse);

  int32_t load_nodes(const std::string &path, std::string node_type);

461
  int32_t add_graph_node(std::vector<int64_t> &id_list,
462 463
                         std::vector<bool> &is_weight_list);

464
  int32_t remove_graph_node(std::vector<int64_t> &id_list);
465

466 467
  int32_t get_server_index_by_id(int64_t id);
  Node *find_node(int64_t id);
S
seemingwang 已提交
468

Y
yaoxuefeng 已提交
469 470 471
  virtual int32_t Pull(TableContext &context) { return 0; }
  virtual int32_t Push(TableContext &context) { return 0; }

472
  virtual int32_t clear_nodes();
Z
zhaocaibei123 已提交
473 474 475
  virtual void Clear() {}
  virtual int32_t Flush() { return 0; }
  virtual int32_t Shrink(const std::string &param) { return 0; }
S
seemingwang 已提交
476
  //指定保存路径
Z
zhaocaibei123 已提交
477
  virtual int32_t Save(const std::string &path, const std::string &converter) {
S
seemingwang 已提交
478 479
    return 0;
  }
Z
zhaocaibei123 已提交
480 481
  virtual int32_t InitializeShard() { return 0; }
  virtual int32_t SetShard(size_t shard_idx, size_t server_num) {
482 483 484 485 486 487 488 489 490 491 492 493
    _shard_idx = shard_idx;
    /*
    _shard_num is not used in graph_table, this following operation is for the
    purpose of
    being compatible with base class table.
    */
    _shard_num = server_num;
    this->server_num = server_num;
    return 0;
  }
  virtual uint32_t get_thread_pool_index_by_shard_index(int64_t shard_index);
  virtual uint32_t get_thread_pool_index(int64_t node_id);
S
seemingwang 已提交
494 495
  virtual std::pair<int32_t, std::string> parse_feature(std::string feat_str);

496
  virtual int32_t get_node_feat(const std::vector<int64_t> &node_ids,
S
seemingwang 已提交
497 498 499
                                const std::vector<std::string> &feature_names,
                                std::vector<std::vector<std::string>> &res);

S
seemingwang 已提交
500
  virtual int32_t set_node_feat(
501
      const std::vector<int64_t> &node_ids,
S
seemingwang 已提交
502 503 504
      const std::vector<std::string> &feature_names,
      const std::vector<std::vector<std::string>> &res);

S
seemingwang 已提交
505 506
  size_t get_server_num() { return server_num; }

507
  virtual int32_t make_neighbor_sample_cache(size_t size_limit, size_t ttl) {
508 509 510
    {
      std::unique_lock<std::mutex> lock(mutex_);
      if (use_cache == false) {
511
        scaled_lru.reset(new ScaledLRU<SampleKey, SampleResult>(
512
            task_pool_size_, size_limit, ttl));
513 514 515 516 517
        use_cache = true;
      }
    }
    return 0;
  }
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
#ifdef PADDLE_WITH_HETERPS
  virtual int32_t start_graph_sampling() {
    return this->graph_sampler->start_graph_sampling();
  }
  virtual int32_t end_graph_sampling() {
    return this->graph_sampler->end_graph_sampling();
  }
  virtual int32_t set_graph_sample_callback(
      std::function<void(std::vector<paddle::framework::GpuPsCommGraph> &)>
          callback) {
    graph_sampler->set_graph_sample_callback(callback);
    return 0;
  }
// virtual GraphSampler *get_graph_sampler() { return graph_sampler.get(); }
#endif
S
seemingwang 已提交
533
 protected:
534
  std::vector<GraphShard *> shards, extra_shards;
S
seemingwang 已提交
535
  size_t shard_start, shard_end, server_num, shard_num_per_server, shard_num;
536
  int task_pool_size_ = 24;
S
seemingwang 已提交
537 538 539 540 541 542 543 544 545 546
  const int random_sample_nodes_ranges = 3;

  std::vector<std::string> feat_name;
  std::vector<std::string> feat_dtype;
  std::vector<int32_t> feat_shape;
  std::unordered_map<std::string, int32_t> feat_id_map;
  std::string table_name;
  std::string table_type;

  std::vector<std::shared_ptr<::ThreadPool>> _shards_task_pool;
547
  std::vector<std::shared_ptr<std::mt19937_64>> _shards_task_rng_pool;
548
  std::shared_ptr<ScaledLRU<SampleKey, SampleResult>> scaled_lru;
549 550
  std::unordered_set<int64_t> extra_nodes;
  std::unordered_map<int64_t, size_t> extra_nodes_to_thread_index;
551
  bool use_cache, use_duplicate_nodes;
552 553
  int cache_size_limit;
  int cache_ttl;
554
  mutable std::mutex mutex_;
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
  std::shared_ptr<pthread_rwlock_t> rw_lock;
#ifdef PADDLE_WITH_HETERPS
  // paddle::framework::GpuPsGraphTable gpu_graph_table;
  bool gpups_mode;
  // std::shared_ptr<::ThreadPool> graph_sample_pool;
  std::shared_ptr<GraphSampler> graph_sampler;
  REGISTER_GRAPH_FRIEND_CLASS(2, CompleteGraphSampler, BasicBfsGraphSampler)
#endif
};

#ifdef PADDLE_WITH_HETERPS
REGISTER_PSCORE_REGISTERER(GraphSampler);
class CompleteGraphSampler : public GraphSampler {
 public:
  CompleteGraphSampler() {}
  ~CompleteGraphSampler() {}
  // virtual pthread_rwlock_t *export_rw_lock();
  virtual int run_graph_sampling();
  virtual void init(size_t gpu_num, GraphTable *graph_table,
                    std::vector<std::string> args_);

 protected:
  GraphTable *graph_table;
  std::vector<std::vector<paddle::framework::GpuPsGraphNode>> sample_nodes;
  std::vector<std::vector<int64_t>> sample_neighbors;
  // std::vector<GpuPsCommGraph> sample_res;
  // std::shared_ptr<std::mt19937_64> random;
  int gpu_num;
};

class BasicBfsGraphSampler : public GraphSampler {
 public:
  BasicBfsGraphSampler() {}
  ~BasicBfsGraphSampler() {}
  // virtual pthread_rwlock_t *export_rw_lock();
  virtual int run_graph_sampling();
  virtual void init(size_t gpu_num, GraphTable *graph_table,
                    std::vector<std::string> args_);

 protected:
  GraphTable *graph_table;
  // std::vector<std::vector<GpuPsGraphNode>> sample_nodes;
  std::vector<std::vector<paddle::framework::GpuPsGraphNode>> sample_nodes;
  std::vector<std::vector<int64_t>> sample_neighbors;
  size_t gpu_num;
600
  int init_search_size, node_num_for_each_shard, edge_num_for_each_node;
601 602 603
  int rounds, interval;
  std::vector<std::unordered_map<int64_t, std::vector<int64_t>>>
      sample_neighbors_map;
S
seemingwang 已提交
604
};
605
#endif
606
}  // namespace distributed
607

608
};  // namespace paddle
609 610 611 612 613 614 615 616 617 618

namespace std {

template <>
struct hash<paddle::distributed::SampleKey> {
  size_t operator()(const paddle::distributed::SampleKey &s) const {
    return s.node_key ^ s.sample_size;
  }
};
}