concat_mkldnn_op.cc 9.4 KB
Newer Older
M
Michal Gallus 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

M
Michal Gallus 已提交
15
#include <memory>
16

M
Michal Gallus 已提交
17
#include "paddle/fluid/operators/concat_op.h"
18
#include "paddle/fluid/operators/utils.h"
M
Michal Gallus 已提交
19
#include "paddle/fluid/platform/mkldnn_helper.h"
20
#include "paddle/fluid/platform/mkldnn_reuse.h"
M
Michal Gallus 已提交
21 22 23 24

namespace paddle {
namespace operators {

25
using dnnl::concat;
26 27 28
using dnnl::memory;
using dnnl::primitive;
using dnnl::stream;
29 30 31
using framework::DataLayout;
using framework::LoDTensor;
using framework::Tensor;
M
Michal Gallus 已提交
32 33
using platform::to_void_cast;

34 35 36 37 38
template <typename T>
class ConcatMKLDNNHandler
    : public platform::MKLDNNHandlerNoCachingT<T, dnnl::concat> {
 public:
  ConcatMKLDNNHandler(const framework::ExecutionContext& ctx,
39
                      const dnnl::engine mkldnn_engine,
40 41
                      const std::vector<const Tensor*>& inputs,
                      Tensor* output)
42 43 44 45 46
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::concat>(mkldnn_engine,
                                                           ctx.GetPlace()) {
    int concat_axis = ctx.Attr<int>("axis");
    const int rank = inputs[0]->dims().size();
    PADDLE_ENFORCE_EQ(
47 48
        concat_axis >= -rank && concat_axis < rank,
        true,
49 50
        platform::errors::InvalidArgument(
            "The axis is expected to be in range of [%d, %d), but got %d",
51 52 53
            -rank,
            rank,
            concat_axis));
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

    if (ctx.HasInput("AxisTensor")) {
      auto* axis_tensor = ctx.Input<Tensor>("AxisTensor");
      concat_axis = GetDataFromTensor(axis_tensor)[0];
      auto out_dims = inputs[0]->dims();
      for (size_t i = 1; i < inputs.size(); ++i) {
        out_dims[concat_axis] += inputs[i]->dims()[concat_axis];
      }
      output->Resize(out_dims);
    }

    if (concat_axis < 0) {
      concat_axis = concat_axis + rank;
    }

69 70
    memory::data_type dt = framework::ToMKLDNNDataType(
        framework::TransToProtoVarType(inputs[0]->dtype()));
71 72 73 74 75
    std::vector<memory::desc> srcs_md;
    srcs_md.reserve(inputs.size());

    // Create memory descriptors for each of inputs
    for (size_t i = 0; i < inputs.size(); ++i) {
76
      srcs_md.push_back(inputs[i]->mem_desc());
77 78
    }

79
    auto dst_dims = phi::vectorize<int64_t>(output->dims());
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

    dnnl::memory::desc dst_md;

    // if concat is being used as a stack op(all source memories dims on
    // concat_axis are equal to 1), then it may choose a non-optimal memory
    // format tag for destination, because concat primitive is chosing it based
    // on source memory descriptors and f.e.200x1x10 can be described as both
    // abc and bac and both would be using exact same physical layout, but in
    // that scenario bac will be chosen for destination no matter which
    // formats are being set in inputs. In that scenario we are enforcing using
    // a dense format, because it is the most common one and should be the best
    // in terms of the performance
    if (dst_dims[concat_axis] == static_cast<int64_t>(srcs_md.size())) {
      dst_md = memory::desc(
          dst_dims, dt, platform::GetPlainMKLDNNFormat(dst_dims.size()));
    } else {
      dst_md = memory::desc(dst_dims, dt, MKLDNNMemoryFormat::any);
    }
98 99 100 101 102 103 104

    this->AcquireForwardPrimitiveDescriptor(dst_md, concat_axis, srcs_md);
  }

  // (jczaja) concat oneDNN prim is not having .desc attribute so
  // we cannot use base AcquireForwardPrimitiveDescriptor
  void AcquireForwardPrimitiveDescriptor(
105 106
      const memory::desc& dst_md,
      const int concat_axis,
107 108 109 110 111
      const std::vector<memory::desc>& srcs_md) {
    this->fwd_pd_.reset(new dnnl::concat::primitive_desc(
        dst_md, concat_axis, srcs_md, this->engine_));
  }

112
  std::shared_ptr<dnnl::memory> AcquireSrcMemory(const Tensor& input, int i) {
113 114 115 116 117 118
    const T* input_data = input.data<T>();
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->src_desc(i),
                                            to_void_cast<T>(input_data));
  }
};

M
Michal Gallus 已提交
119 120
static void EnforceLayouts(const std::vector<const Tensor*> inputs) {
  for (auto* input : inputs) {
121
    PADDLE_ENFORCE_EQ(
122 123
        input->layout(),
        DataLayout::kMKLDNN,
124
        platform::errors::InvalidArgument("Wrong layout set for Input tensor"));
M
Michal Gallus 已提交
125 126 127
  }
}

128 129 130 131
// From a multi-input, gather only nonempty inputs
static const std::vector<const Tensor*> ReduceMultiInput(
    const std::vector<const Tensor*>& inputs) {
  std::vector<const Tensor*> reduced(inputs.size());
132 133 134 135
  auto end_it = std::copy_if(
      inputs.begin(), inputs.end(), reduced.begin(), [](const Tensor* t) {
        return t->numel() > 0;
      });
136 137 138 139
  reduced.resize(std::distance(reduced.begin(), end_it));
  return reduced;
}

M
Michal Gallus 已提交
140 141 142 143
template <typename T>
class ConcatMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
144 145 146
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();
147 148
    // If any of the multiple inputs of concat has an input size of 0, the
    // actual size of the multi_input will change
149
    auto multi_input = ReduceMultiInput(ctx.MultiInput<Tensor>("X"));
M
Michal Gallus 已提交
150 151
    EnforceLayouts(multi_input);
    Tensor* output = ctx.Output<Tensor>("Out");
152

153
    ConcatMKLDNNHandler<T> handler(ctx, mkldnn_engine, multi_input, output);
154

155 156
    std::vector<std::shared_ptr<memory>> srcs;
    srcs.reserve(multi_input.size());
A
Adam 已提交
157

158 159
    auto dst_mem = handler.AcquireDstMemory(output);
    auto concat_p = handler.AcquireForwardPrimitive();
160

161
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
A
Adam 已提交
162 163
    std::unordered_map<int, memory> args;
    for (size_t i = 0; i < multi_input.size(); ++i) {
164
      srcs.push_back(handler.AcquireSrcMemory(*(multi_input[i]), i));
165
      args.insert({DNNL_ARG_MULTIPLE_SRC + i, *(srcs.at(i))});
A
Adam 已提交
166
    }
167
    args.insert({DNNL_ARG_DST, *dst_mem});
A
Adam 已提交
168 169 170

    concat_p->execute(astream, args);
    astream.wait();
M
Michal Gallus 已提交
171

172
    output->set_mem_desc(dst_mem->get_desc());
M
Michal Gallus 已提交
173 174
  }
};
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

template <typename T>
class ConcatGradMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    const auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();

    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();

    auto out_var_names = ctx.OutputNames(framework::GradVarName("X"));

    const auto x = ctx.MultiInput<LoDTensor>("X");
    const auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto dx = ctx.MultiOutput<LoDTensor>(framework::GradVarName("X"));

    for (size_t i = 0; i < dx.size(); ++i) {
      if (dx[i] != nullptr) {
        dx[i]->set_lod(x[i]->lod());
      }
    }

    int axis = ctx.Attr<int>("axis");
    if (ctx.HasInput("AxisTensor")) {
      auto* axis_tensor = ctx.Input<Tensor>("AxisTensor");
      axis = GetDataFromTensor<int>(axis_tensor)[0];
    }

204
    auto dout_vec_dims = phi::vectorize(dout->dims());
205 206 207 208 209

    axis = ComputeAxis(axis, dout_vec_dims.size());

    std::vector<int64_t> offset(dout_vec_dims.size(), 0);

210 211 212
    dnnl::memory::data_type dout_type = framework::ToMKLDNNDataType(
        framework::TransToProtoVarType(dout->dtype()));
    platform::ReorderMKLDNNHandler reorder_handler(
213 214 215
        dout_vec_dims,
        framework::TransToProtoVarType(dout->dtype()),
        dout_type,
216
        onednn_engine);
217
    auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
218
        dout->mem_desc(), platform::to_void_cast(dout->data<T>()));
219 220 221 222

    for (size_t i = 0; i < dx.size(); ++i) {
      if (out_var_names[i] != framework::kEmptyVarName &&
          dx[i]->numel() != 0UL) {
223
        auto dx_vec_dims = phi::vectorize(dx[i]->dims());
224 225 226 227
        auto slice_mem_p = reorder_handler.AcquireSubmemory(
            dx_vec_dims, offset, reorder_src_memory_p);

        auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
228 229 230 231
            dx[i],
            dx_vec_dims,
            platform::GetPlainMKLDNNFormat(dx_vec_dims.size()),
            ctx.GetPlace());
232 233 234 235 236 237 238
        auto reorder_p =
            reorder_handler.AcquireReorder(reorder_dst_memory_p, slice_mem_p);

        reorder_p->execute(astream, *slice_mem_p, *reorder_dst_memory_p);

        offset[axis] += dx[i]->dims()[axis];

239
        dx[i]->set_mem_desc(reorder_dst_memory_p->get_desc());
240 241 242 243 244 245
      }
    }
    astream.wait();
  }
};

M
Michal Gallus 已提交
246 247 248 249 250
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

251 252 253
REGISTER_OP_KERNEL(concat,
                   MKLDNN,
                   ::paddle::platform::CPUPlace,
254
                   ops::ConcatMKLDNNOpKernel<float>,
255
                   ops::ConcatMKLDNNOpKernel<paddle::platform::bfloat16>,
256 257
                   ops::ConcatMKLDNNOpKernel<int8_t>,
                   ops::ConcatMKLDNNOpKernel<uint8_t>);
258

259 260 261
REGISTER_OP_KERNEL(concat_grad,
                   MKLDNN,
                   ::paddle::platform::CPUPlace,
262 263
                   ops::ConcatGradMKLDNNOpKernel<float>,
                   ops::ConcatGradMKLDNNOpKernel<paddle::platform::bfloat16>);