operator.cc 29.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16
#include <gflags/gflags.h>
#include <glog/logging.h>
17

18
#include <algorithm>
19

Y
Yi Wang 已提交
20 21
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/executor.h"
22
#include "paddle/fluid/framework/lod_tensor.h"
23
#include "paddle/fluid/framework/operator.h"
Y
Yi Wang 已提交
24
#include "paddle/fluid/framework/shape_inference.h"
25
#include "paddle/fluid/framework/transfer_scope_cache.h"
Y
Yi Wang 已提交
26
#include "paddle/fluid/framework/var_type.h"
27
#include "paddle/fluid/platform/profiler.h"
Q
Qiao Longfei 已提交
28

D
dzhwinter 已提交
29
DECLARE_bool(benchmark);
C
chengduoZH 已提交
30 31 32
DEFINE_bool(check_nan_inf, false,
            "Checking whether operator produce NAN/INF or not. It will be "
            "extremely slow so please use this flag wisely.");
D
dzhwinter 已提交
33

Q
Qiao Longfei 已提交
34 35 36
namespace paddle {
namespace framework {

37 38 39 40 41 42
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
43

Q
qiaolongfei 已提交
44 45 46 47 48 49 50 51 52 53 54
proto::VarType::Type GetDataTypeOfVar(const Variable* var) {
  if (var->IsType<framework::LoDTensor>()) {
    return framework::ToDataType(var->Get<framework::LoDTensor>().type());
  } else if (var->IsType<framework::SelectedRows>()) {
    return framework::ToDataType(
        var->Get<framework::SelectedRows>().value().type());
  } else {
    PADDLE_THROW("Var should be LoDTensor or SelectedRows");
  }
}

55 56
static DDim GetDims(const Scope& scope, const std::string& name,
                    bool get_actual_dim = false) {
57
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
58 59
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
60 61
  }

M
minqiyang 已提交
62 63
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
M
minqiyang 已提交
64
    if (UNLIKELY(!tensor.IsInitialized())) {
65
      return DDim({-1});
66
    }
M
minqiyang 已提交
67 68 69 70 71 72 73
    return tensor.dims();
  } else if (var->IsType<SelectedRows>()) {
    if (get_actual_dim) {
      return var->Get<SelectedRows>().value().dims();
    } else {
      return var->Get<SelectedRows>().GetCompleteDims();
    }
74 75 76 77 78
  } else {
    return DDim({-1});
  }
}

Q
Qiao Longfei 已提交
79 80 81 82 83 84
static bool VarInited(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

D
dzhwinter 已提交
85 86 87 88 89
static std::string GetDtype(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
90

M
minqiyang 已提交
91 92 93
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
94 95
      return "";
    }
M
minqiyang 已提交
96 97
    return DataTypeToString(ToDataType(tensor.type()));
  } else if (var->IsType<SelectedRows>()) {
Q
Qiao Longfei 已提交
98 99 100 101 102 103
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return DataTypeToString(ToDataType(tensor.type()));
    }
D
dzhwinter 已提交
104 105 106 107 108
  } else {
    return "";
  }
}

109 110 111 112 113 114
static int GetRowSize(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

M
minqiyang 已提交
115 116
  if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().rows().size();
117 118 119 120 121
  }

  return -1;
}

Q
Qiao Longfei 已提交
122 123 124 125 126 127 128 129
static LoD GetLoD(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
130 131 132
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
133 134
      return default_lod;
    }
M
minqiyang 已提交
135
    return tensor.lod();
Q
Qiao Longfei 已提交
136 137 138 139 140
  } else {
    return default_lod;
  }
}

141
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
142
  VLOG(40) << place << " " << DebugStringEx(&scope);
143
  if (platform::is_gpu_place(place)) {
144
#ifndef PADDLE_WITH_CUDA
145
    PADDLE_THROW("Cannot run operator on place %s", place);
146
#else
147 148
    auto dev_id = boost::get<platform::CUDAPlace>(place).device;
    platform::SetDeviceId(dev_id);
149 150
#endif
  }
151

P
peizhilin 已提交
152 153 154
  // The profile has a process-wide mutex, results in serious performance issue
  // in concurrency scenerio. Here use an `if` to fix this issue.
  // Please not remove the `if`, ask @Superjomn if there are any concern.
155 156 157 158
  if (platform::IsProfileEnabled()) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    platform::RecordEvent record_event(Type(), pool.Get(place));
    RunImpl(scope, place);
P
peizhilin 已提交
159
  } else {
160 161
    RunImpl(scope, place);
  }
162
  VLOG(30) << place << " " << DebugStringEx(&scope);
163 164
}

165 166 167 168 169 170 171 172
bool OperatorBase::HasInputs(const std::string& name) const {
  if (inputs_.find(name) != inputs_.end()) {
    return true;
  } else {
    return false;
  }
}

173
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
174
  auto& ins = Inputs(name);
Y
Yu Yang 已提交
175
  PADDLE_ENFORCE_LE(ins.size(), 1UL,
176 177
                    "Operator %s's input %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
178
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
179 180
}

Y
Yu Yang 已提交
181 182
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
183
  auto it = inputs_.find(name);
184 185
  PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
                 type_, name);
Y
Yu Yang 已提交
186
  return it->second;
Y
Yan Chunwei 已提交
187 188
}

189
bool OperatorBase::HasOutputs(const std::string& name) const {
190
  if (outputs_.find(name) != outputs_.end()) {
191 192 193 194 195 196
    return true;
  } else {
    return false;
  }
}

197
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
198
  auto& outs = Outputs(name);
Y
Yu Yang 已提交
199
  PADDLE_ENFORCE_LE(outs.size(), 1UL,
200 201
                    "Operator %s's output %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
202
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
203 204
}

Y
Yu Yang 已提交
205 206
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
207
  auto it = outputs_.find(name);
208 209
  PADDLE_ENFORCE(it != outputs_.end(),
                 "Operator %s does not have an output called %s.", type_, name);
Y
Yu Yang 已提交
210
  return it->second;
Y
Yan Chunwei 已提交
211 212
}

213
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
214
  std::stringstream ss;
Y
Yu Yang 已提交
215
  ss << "Op(" << type_ << "), inputs:{";
Y
Yu Yang 已提交
216 217
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
Y
Yu Yang 已提交
218 219
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
220 221
      auto var_name = input.second[i];
      ss << var_name;
222
      if (scope) {
Q
Qiao Longfei 已提交
223 224 225 226 227 228 229 230 231 232 233
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
          std::string dtype = GetDtype(*scope, var_name);
          ss << ":" << dtype;
          ss << "[" << GetDims(*scope, var_name, true) << "]";
          ss << "(" << GetLoD(*scope, var_name) << ")";
234
        }
235
      }
Y
Yu Yang 已提交
236 237 238
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
239
    }
Y
Yu Yang 已提交
240
    ss << "]";
Y
Yu Yang 已提交
241 242
    ++it;
    if (it != inputs_.end()) {
243 244
      ss << ", ";
    }
Q
Qiao Longfei 已提交
245
  }
Y
Yu Yang 已提交
246
  ss << "}, outputs:{";
Y
Yu Yang 已提交
247 248
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
249 250
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
251 252
      auto var_name = output.second[i];
      ss << var_name;
253
      if (scope) {
Q
Qiao Longfei 已提交
254 255 256 257 258 259 260
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
261 262
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
Q
Qiao Longfei 已提交
263 264
          ss << "[" << GetDims(*scope, var_name, true) << "]";
          ss << "(" << GetLoD(*scope, var_name) << ")";
265
        }
266
      }
Y
Yu Yang 已提交
267 268 269
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
270
    }
Y
Yu Yang 已提交
271
    ss << "]";
Y
Yu Yang 已提交
272 273
    ++it;
    if (it != outputs_.end()) {
274 275
      ss << ", ";
    }
Q
Qiao Longfei 已提交
276
  }
Y
Yu Yang 已提交
277
  ss << "}.";
Q
Qiao Longfei 已提交
278 279 280
  return ss.str();
}

Y
Yu Yang 已提交
281
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
282 283
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
284 285
                           const AttributeMap& attrs)
    : type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs) {
286 287
  GenerateTemporaryNames();
  CheckAllInputOutputSet();
Y
Yu Yang 已提交
288
}
289

Q
qijun 已提交
290 291
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
292
  for (auto& o : inputs_) {
Q
qijun 已提交
293 294 295 296 297 298
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
299 300 301 302 303 304 305 306 307 308
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
Y
Yu Yang 已提交
309
  auto& info = OpInfoMap::Instance().Get(Type());
Y
Yu Yang 已提交
310 311

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
312
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
313 314 315 316 317 318 319 320 321
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
322 323
}

324 325 326
void OperatorBase::CheckAllInputOutputSet() const {
  auto& info_map = OpInfoMap::Instance();
  auto* op_info = info_map.GetNullable(Type());
Y
Yu Yang 已提交
327
  if (op_info == nullptr || op_info->proto_ == nullptr) return;
328 329

  for (auto& in : op_info->Proto().inputs()) {
330 331 332 333
    if (!in.dispensable()) {
      PADDLE_ENFORCE(inputs_.find(in.name()) != inputs_.end(),
                     "Operator %s's input, %s, is not set", Type(), in.name());
    }
334 335 336
  }

  for (auto& out : op_info->Proto().outputs()) {
337 338 339 340 341
    if (!out.dispensable()) {
      PADDLE_ENFORCE(outputs_.find(out.name()) != outputs_.end(),
                     "Operator %s's output, %s, is not set", Type(),
                     out.name());
    }
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

C
chengduo 已提交
358 359
static bool VarIsTensor(const Variable& var) {
  return var.IsType<LoDTensor>() || var.IsType<SelectedRows>();
360 361
}

C
chengduo 已提交
362
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
363 364 365 366
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
  } else if (var.IsType<SelectedRows>()) {
    return &(var.Get<SelectedRows>().value());
Q
QI JUN 已提交
367
  } else {
Y
Yang Yang 已提交
368
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
C
chengduo 已提交
369
                 var.Type().name());
Q
QI JUN 已提交
370 371 372
  }
}

C
chengduo 已提交
373
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
374
  if (var->IsType<LoDTensor>()) {
375
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
376
  } else if (var->IsType<SelectedRows>()) {
377
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
378
  } else {
Y
Yang Yang 已提交
379 380
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
                 var->Type().name());
Q
QI JUN 已提交
381 382 383
  }
}

384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
bool ExecutionContext::HasInput(const std::string& name) const {
  if (!op_.HasInputs(name)) {
    return false;
  }
  auto& ins = Inputs(name);
  size_t length = ins.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Input %s should not have more than one inputs", name);
  auto arg = ins[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
  if (!op_.HasOutputs(name)) {
    return false;
  }
  auto& outs = Outputs(name);
  size_t length = outs.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Output %s should not have more than one inputs", name);
  auto arg = outs[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

416
template <>
417
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
C
chengduo 已提交
418
  return Input<LoDTensor>(name);
419 420 421
}

template <>
422
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
423 424 425 426
    const std::string& name) const {
  auto names = op().Inputs(name);
  std::vector<const Tensor*> res;
  res.reserve(names.size());
427
  std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
428
                 [&](const std::string& sub_name) -> const Tensor* {
429
                   auto var = scope_.FindVar(sub_name);
C
chengduo 已提交
430 431 432 433 434 435
                   if (var == nullptr) return nullptr;
                   PADDLE_ENFORCE(
                       var->IsType<LoDTensor>(),
                       "%s should be LoDTensor, but the received type is %s",
                       sub_name, var->Type().name());
                   return &(var->Get<LoDTensor>());
436
                 });
437 438 439 440
  return res;
}

template <>
441
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
C
chengduo 已提交
442
  return Output<LoDTensor>(name);
443 444 445
}

template <>
446
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
447 448 449 450
    const std::string& name) const {
  auto names = op().Outputs(name);
  std::vector<Tensor*> res;
  res.reserve(names.size());
451
  std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
452
                 [&](const std::string& sub_name) -> Tensor* {
453
                   auto var = scope_.FindVar(sub_name);
C
chengduo 已提交
454 455 456 457 458 459
                   if (var == nullptr) return nullptr;
                   PADDLE_ENFORCE(
                       var->IsType<LoDTensor>(),
                       "%s should be LoDTensor, but the received type is %s",
                       sub_name, var->Type().name());
                   return var->GetMutable<LoDTensor>();
460
                 });
461 462 463
  return res;
}

Y
Yu Yang 已提交
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

479 480 481 482 483 484
class RuntimeInferShapeContext : public InferShapeContext {
 public:
  RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}

  bool HasInput(const std::string& name) const override {
485 486 487 488
    // has only one input
    const auto& ins = op_.Inputs();
    auto it = ins.find(name);
    if (it == ins.end()) {
489 490
      return false;
    }
491
    const auto& in = it->second;
T
tensor-tang 已提交
492
    if (in.size() == 0 || in[0] == kEmptyVarName) {
493 494
      return false;
    }
T
tensor-tang 已提交
495
    PADDLE_ENFORCE_EQ(in.size(), 1UL,
F
fengjiayi 已提交
496
                      "Input %s should not have more than one inputs", name);
497
    return scope_.FindVar(in[0]) != nullptr;
498 499 500
  }

  bool HasOutput(const std::string& name) const override {
501 502 503 504
    // has only one output
    const auto& outs = op_.Outputs();
    auto it = outs.find(name);
    if (it == outs.end()) {
505 506
      return false;
    }
507
    const auto& out = it->second;
T
tensor-tang 已提交
508
    if (out.size() == 0 || out[0] == kEmptyVarName) {
509 510
      return false;
    }
T
tensor-tang 已提交
511 512
    PADDLE_ENFORCE_EQ(out.size(), 1UL,
                      "Output %s should not have more than one outputs", name);
513
    return scope_.FindVar(out[0]) != nullptr;
514 515 516
  }

  bool HasInputs(const std::string& name) const override {
517 518 519
    if (!op_.HasInputs(name)) {
      return false;
    }
520 521 522 523 524 525 526 527 528 529 530 531 532
    auto inputs = op_.Inputs(name);
    if (inputs.empty()) {
      return false;
    }
    for (auto& input : inputs) {
      if (scope_.FindVar(input) == nullptr) {
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
533 534 535
    if (!op_.HasOutputs(name)) {
      return false;
    }
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
    auto outputs = op_.Outputs(name);
    if (outputs.empty()) {
      return false;
    }
    for (auto& output : outputs) {
      if (scope_.FindVar(output) == nullptr) {
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

  const std::vector<std::string>& Inputs(
      const std::string& name) const override {
    return op_.Inputs(name);
  }

  const std::vector<std::string>& Outputs(
      const std::string& name) const override {
    return op_.Outputs(name);
  }

560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
    PADDLE_ENFORCE_LT(i, Inputs(in).size());
    PADDLE_ENFORCE_LT(j, Outputs(out).size());
    const std::string& input_n = Inputs(in)[i];
    const std::string& output_n = Outputs(out)[j];

    Variable* in_var = scope_.FindVar(input_n);
    Variable* out_var = scope_.FindVar(output_n);
    PADDLE_ENFORCE(in_var->Type() == out_var->Type(),
                   "The type of %s and %s is not the same.", output_n,
                   GetDim(input_n));

    if (in_var->IsType<framework::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<framework::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<framework::SelectedRows>();
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
      PADDLE_THROW(
          "Currently, the input type of ShareDim only can be LoDTensor "
          "or SelectedRows.");
    }
  }

Q
Qiao Longfei 已提交
590 591
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
592 593 594 595 596
    const std::vector<std::string>& inputs = Inputs(in);
    const std::vector<std::string>& outputs = Outputs(out);
    PADDLE_ENFORCE_LT(i, inputs.size());
    PADDLE_ENFORCE_LT(j, outputs.size());
    Variable* in_var = scope_.FindVar(inputs.at(i));
Q
Qiao Longfei 已提交
597
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
598
    Variable* out_var = scope_.FindVar(outputs.at(j));
Q
Qiao Longfei 已提交
599 600 601 602 603
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
604

M
mozga-intel 已提交
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
624 625
  }

626 627 628
  bool IsRuntime() const override { return true; }

 protected:
629 630
  DDim GetDim(const std::string& name) const override {
    Variable* var = scope_.FindVar(name);
F
fengjiayi 已提交
631
    PADDLE_ENFORCE_NOT_NULL(var);
632 633 634 635 636
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
F
fengjiayi 已提交
637 638 639 640 641 642 643
      PADDLE_THROW(
          "Only LoDTensor/SelectedRows support 'GetDim', but Variable %s's "
          "type_id is %s.",
          name, var->Type().name());
    }
  }

F
fengjiayi 已提交
644
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
Y
Yu Yang 已提交
645
    PADDLE_THROW("Only compile time support this method");
646 647 648 649 650 651 652 653 654
  }

  void SetDim(const std::string& name, const DDim& dim) override {
    Variable* var = scope_.FindVar(name);
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
Y
Yang Yang 已提交
655 656
      PADDLE_THROW("Variable %s type_id %s, expect LoDTensor/SelectedRows.",
                   name, var->Type().name());
657 658 659
    }
  }

F
fengjiayi 已提交
660 661
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
Y
Yu Yang 已提交
662
    PADDLE_THROW("Only compile time support this method");
F
fengjiayi 已提交
663 664
  }

665
  proto::VarType::Type GetVarType(const std::string& name) const override {
666 667 668 669
    auto* var = scope_.FindVar(name);
    return ToVarType(var->Type());
  }

F
fengjiayi 已提交
670 671 672 673
  InferShapeVarPtr GetVarPtr(const std::string& name) override {
    return scope_.FindVar(name);
  }

674
 private:
675 676 677 678
  const OperatorBase& op_;
  const Scope& scope_;
};

C
chengduoZH 已提交
679 680 681 682 683
static void CheckTensorNANOrInf(const std::string& name,
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
S
sneaxiy 已提交
684
  if (!IsType<float>(tensor.type()) && !IsType<double>(tensor.type())) {
C
chengduoZH 已提交
685 686 687 688 689 690 691 692
    return;
  }
  PADDLE_ENFORCE(!framework::TensorContainsInf(tensor),
                 "Tensor %s contains Inf", name);
  PADDLE_ENFORCE(!framework::TensorContainsNAN(tensor),
                 "Tensor %s contains NAN", name);
}

693 694
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
695 696
  RuntimeInferShapeContext infer_shape_ctx(*this, scope);
  this->InferShape(&infer_shape_ctx);
Y
Yu Yang 已提交
697
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
698
  auto* dev_ctx = pool.Get(place);
699

700 701 702 703
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  if (kernels_iter == all_op_kernels.end()) {
Y
Yu Yang 已提交
704 705
    PADDLE_THROW(
        "There are no kernels which are registered in the %s operator.", type_);
706 707
  }

Q
qiaolongfei 已提交
708 709
  OpKernelMap& kernels = kernels_iter->second;

710 711
  // TODO(dzhwinter) : kernel fallback mechanism will be added when all the
  // transform functions are ready.
Q
qiaolongfei 已提交
712

713 714 715 716
  // for (auto& candidate : kKernelPriority) {
  //   Do selection
  // }

Y
yuyang18 已提交
717 718
  auto expected_kernel_key =
      this->GetExpectedKernelType(ExecutionContext(*this, scope, *dev_ctx));
719
  VLOG(30) << "expected_kernel_key:" << expected_kernel_key;
Q
qiaolongfei 已提交
720

721
  auto kernel_iter = kernels.find(expected_kernel_key);
722
#ifdef PADDLE_WITH_MKLDNN
P
Paweł Żelazko 已提交
723
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
724 725
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
726
    VLOG(30) << "missing MKLDNN kernel: fallbacking to PLAIN one";
727 728 729 730 731
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
732 733 734 735 736
  if (kernel_iter == kernels.end()) {
    PADDLE_THROW("op %s does not have kernel for %s", type_,
                 KernelTypeToString(expected_kernel_key));
  }

Y
yuyang18 已提交
737 738 739 740
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
  auto* transfer_scope =
      TryTransferData(scope, expected_kernel_key, &transfered_inplace_vars);
741

Y
yuyang18 已提交
742 743 744 745 746 747
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

  if (!(expected_kernel_key.place_ == dev_ctx->GetPlace())) {
    dev_ctx = pool.Get(expected_kernel_key.place_);
748
  }
Q
QI JUN 已提交
749

Y
yuyang18 已提交
750
  kernel_iter->second(ExecutionContext(*this, exec_scope, *dev_ctx));
D
dzhwinter 已提交
751

Y
yuyang18 已提交
752 753 754
  if (!transfered_inplace_vars.empty()) {
    // there is inplace variable has been transfered.
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
755 756
  }

D
dzhwinter 已提交
757
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
758
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
759
    dev_ctx->Wait();
D
dzhwinter 已提交
760
  }
C
chengduoZH 已提交
761 762 763

  if (FLAGS_check_nan_inf) {
    for (auto& vname : OutputVars(true)) {
Y
yuyang18 已提交
764
      auto* var = exec_scope.FindVar(vname);
C
chengduoZH 已提交
765 766 767
      if (var == nullptr) continue;
      if (var->IsType<framework::LoDTensor>()) {
        CheckTensorNANOrInf(vname, var->Get<framework::LoDTensor>());
768 769
      } else if (var->IsType<framework::SelectedRows>()) {
        CheckTensorNANOrInf(vname, var->Get<framework::SelectedRows>().value());
C
chengduoZH 已提交
770 771 772
      }
    }
  }
Q
Qiao Longfei 已提交
773
}
Y
yuyang18 已提交
774 775 776 777
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
778 779
    VLOG(30) << "share inplace var " + var_name +
                    " back to it's original scope";
C
chengduo 已提交
780 781
    auto* original_tensor =
        GetMutableLoDTensorOrSelectedRowsValueFromVar(scope.FindVar(var_name));
C
chengduo 已提交
782 783 784
    auto* var = transfer_scope.FindVar(var_name);
    PADDLE_ENFORCE(var != nullptr, "The var[%s] should not be nullptr",
                   var_name);
C
chengduo 已提交
785
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
yuyang18 已提交
786 787 788 789 790 791 792 793 794 795 796 797
    original_tensor->ShareDataWith(*transformed_tensor);
  }
}

Scope* OperatorWithKernel::TryTransferData(
    const Scope& scope, const OpKernelType& expected_kernel_key,
    std::vector<std::string>* transfered_inplace_vars) const {
  Scope* new_scope = nullptr;
  for (auto& var_name_item : Inputs()) {
    for (auto& var_name : var_name_item.second) {
      auto* var = scope.FindVar(var_name);
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
798
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
799 800 801
        continue;
      }

C
chengduo 已提交
802
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
yuyang18 已提交
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

      auto out_var_names = OutputVars(true);
      if (std::find(out_var_names.begin(), out_var_names.end(), var_name) !=
          out_var_names.end()) {
        transfered_inplace_vars->emplace_back(var_name);
      }

820 821
      VLOG(30) << "Transform Variable " << var_name << " from "
               << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
822

823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
      // We use a thread_local cache to fix that issue, the key in the cache is
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
      // variables, that behavior a lot different.
      if (!run_by_executor_) {
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
838
      }
839
      if (!new_scope) {
Y
yuyang18 已提交
840 841 842 843
        new_scope = &scope.NewScope();
      }

      auto* trans_var = new_scope->Var(var_name);
844

Y
yuyang18 已提交
845
      Tensor out;
Y
yuyang18 已提交
846
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
847 848 849 850 851 852
      SetTensorToVariable(*var, out, trans_var);
    }
  }

  return new_scope;
}
Q
Qiao Longfei 已提交
853

854
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
855 856 857
    const ExecutionContext& ctx) const {
  auto& scope = ctx.scope();
  int data_type = -1;
858
  std::string last_input_name;
Y
Yu Yang 已提交
859 860 861 862 863 864 865 866 867 868 869 870 871 872
  for (auto& input : this->inputs_) {
    for (auto& ipt_name : input.second) {
      auto* var = scope.FindVar(ipt_name);
      if (var != nullptr) {
        const Tensor* t = nullptr;
        if (var->IsType<Tensor>()) {
          t = &var->Get<Tensor>();
        } else if (var->IsType<LoDTensor>()) {
          t = &var->Get<LoDTensor>();
        } else if (var->IsType<SelectedRows>()) {
          t = &(var->Get<SelectedRows>().value());
        }
        if (t != nullptr) {
          int tmp = static_cast<int>(ToDataType(t->type()));
873 874
          PADDLE_ENFORCE(
              tmp == data_type || data_type == -1,
875 876
              "DataType of Paddle Op %s must be the same. Get %s(%d) != %s(%d)",
              Type(), last_input_name, data_type, ipt_name, tmp);
Y
Yu Yang 已提交
877
          data_type = tmp;
878
          last_input_name = ipt_name;
Y
Yu Yang 已提交
879 880 881 882 883
        }
      }
    }
  }
  PADDLE_ENFORCE(data_type != -1, "DataType should be indicated by input");
884
  return static_cast<proto::VarType::Type>(data_type);
Y
Yu Yang 已提交
885
}
886

887 888 889 890 891 892 893 894
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
895 896
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
897 898
}

Q
Qiao Longfei 已提交
899
}  // namespace framework
L
liaogang 已提交
900
}  // namespace paddle