distribute_fpn_proposals_op.cu 7.8 KB
Newer Older
J
jerrywgz 已提交
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
J
jerrywgz 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <paddle/fluid/memory/allocation/allocator.h>
#include "cub/cub.cuh"
#include "paddle/fluid/memory/memcpy.h"
18
#include "paddle/fluid/operators/detection/bbox_util.h"
J
jerrywgz 已提交
19 20
#include "paddle/fluid/operators/detection/distribute_fpn_proposals_op.h"
#include "paddle/fluid/operators/gather.cu.h"
21
#include "paddle/fluid/operators/math/math_function.h"
J
jerrywgz 已提交
22 23 24 25 26 27 28 29 30
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/for_range.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

31
static constexpr int kNumCUDAThreads = 64;
J
jerrywgz 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45
static constexpr int kNumMaxinumNumBlocks = 4096;

#define CUDA_1D_KERNEL_LOOP(i, n)                              \
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
       i += blockDim.x * gridDim.x)

int const BBoxSize = 4;

static inline int NumBlocks(const int N) {
  return std::min((N + kNumCUDAThreads - 1) / kNumCUDAThreads,
                  kNumMaxinumNumBlocks);
}

template <class T>
46
__global__ void GPUDistFpnProposalsHelper(
J
jerrywgz 已提交
47 48 49 50 51 52 53
    const int nthreads, const T* rois, const int lod_size,
    const int refer_level, const int refer_scale, const int max_level,
    const int min_level, int* roi_batch_id_data, int* sub_lod_list,
    int* target_lvls) {
  CUDA_1D_KERNEL_LOOP(i, nthreads) {
    const T* offset_roi = rois + i * BBoxSize;
    int roi_batch_ind = roi_batch_id_data[i];
J
jerrywgz 已提交
54
    // get the target level of current rois
J
jerrywgz 已提交
55 56
    T roi_area = RoIArea(offset_roi, false);
    T roi_scale = sqrt(roi_area);
57 58
    int tgt_lvl = floor(
        log2(roi_scale / static_cast<T>(refer_scale) + (T)1e-6) + refer_level);
J
jerrywgz 已提交
59 60
    tgt_lvl = min(max_level, max(tgt_lvl, min_level));
    target_lvls[i] = tgt_lvl;
J
jerrywgz 已提交
61
    // compute number of rois in the same batch and same target level
62 63
    platform::CudaAtomicAdd(
        sub_lod_list + (tgt_lvl - min_level) * lod_size + roi_batch_ind, 1);
J
jerrywgz 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
  }
}

template <typename DeviceContext, typename T>
class GPUDistributeFpnProposalsOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* fpn_rois = ctx.Input<paddle::framework::LoDTensor>("FpnRois");

    auto multi_fpn_rois = ctx.MultiOutput<LoDTensor>("MultiFpnRois");
    auto* restore_index = ctx.Output<Tensor>("RestoreIndex");

    const int min_level = ctx.Attr<int>("min_level");
    const int max_level = ctx.Attr<int>("max_level");
    const int refer_level = ctx.Attr<int>("refer_level");
    const int refer_scale = ctx.Attr<int>("refer_scale");
    int num_level = max_level - min_level + 1;

    // check that the fpn_rois is not empty
    PADDLE_ENFORCE_EQ(fpn_rois->lod().size(), 1UL,
                      "DistributeFpnProposalsOp need 1 level of LoD");

    auto fpn_rois_lod = fpn_rois->lod().back();
    int lod_size = fpn_rois_lod.size() - 1;
    int roi_num = fpn_rois_lod[lod_size];

    auto& dev_ctx = ctx.template device_context<DeviceContext>();

J
jerrywgz 已提交
92
    // get batch id by lod in CPU
J
jerrywgz 已提交
93 94 95 96 97 98 99 100 101
    Tensor roi_batch_id_list;
    roi_batch_id_list.Resize({roi_num});
    int* roi_batch_id_data =
        roi_batch_id_list.mutable_data<int>(platform::CPUPlace());
    for (int n = 0; n < lod_size; ++n) {
      for (size_t i = fpn_rois_lod[n]; i < fpn_rois_lod[n + 1]; ++i) {
        roi_batch_id_data[i] = n;
      }
    }
J
jerrywgz 已提交
102
    // copy batch id list to GPU
J
jerrywgz 已提交
103 104 105 106 107 108 109
    Tensor roi_batch_id_list_gpu;
    framework::TensorCopySync(roi_batch_id_list, dev_ctx.GetPlace(),
                              &roi_batch_id_list_gpu);

    Tensor sub_lod_list;
    sub_lod_list.Resize({num_level, lod_size});
    int* sub_lod_list_data = sub_lod_list.mutable_data<int>(dev_ctx.GetPlace());
110 111 112
    math::SetConstant<platform::CUDADeviceContext, int> set_zero;
    set_zero(dev_ctx, &sub_lod_list, static_cast<int>(0));

J
jerrywgz 已提交
113 114 115 116
    Tensor target_lvls;
    target_lvls.Resize({roi_num});
    int* target_lvls_data = target_lvls.mutable_data<int>(dev_ctx.GetPlace());

117
    int dist_blocks = NumBlocks(roi_num);
J
jerrywgz 已提交
118
    int threads = kNumCUDAThreads;
J
jerrywgz 已提交
119
    // get target levels and sub_lod list
120
    GPUDistFpnProposalsHelper<T><<<dist_blocks, threads>>>(
J
jerrywgz 已提交
121 122 123
        roi_num, fpn_rois->data<T>(), lod_size, refer_level, refer_scale,
        max_level, min_level, roi_batch_id_list_gpu.data<int>(),
        sub_lod_list_data, target_lvls_data);
124 125
    dev_ctx.Wait();
    auto place = boost::get<platform::CUDAPlace>(dev_ctx.GetPlace());
J
jerrywgz 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138

    Tensor index_in_t;
    int* idx_in = index_in_t.mutable_data<int>({roi_num}, dev_ctx.GetPlace());
    platform::ForRange<platform::CUDADeviceContext> for_range(dev_ctx, roi_num);
    for_range(RangeInitFunctor{0, 1, idx_in});

    Tensor keys_out_t;
    int* keys_out = keys_out_t.mutable_data<int>({roi_num}, dev_ctx.GetPlace());
    Tensor index_out_t;
    int* idx_out = index_out_t.mutable_data<int>({roi_num}, dev_ctx.GetPlace());

    // Determine temporary device storage requirements
    size_t temp_storage_bytes = 0;
139 140 141
    cub::DeviceRadixSort::SortPairs<int, int>(nullptr, temp_storage_bytes,
                                              target_lvls_data, keys_out,
                                              idx_in, idx_out, roi_num);
J
jerrywgz 已提交
142
    // Allocate temporary storage
143
    auto d_temp_storage = memory::Alloc(place, temp_storage_bytes);
J
jerrywgz 已提交
144 145

    // Run sorting operation
J
jerrywgz 已提交
146
    // sort target level to get corresponding index
147
    cub::DeviceRadixSort::SortPairs<int, int>(
J
jerrywgz 已提交
148 149 150 151 152
        d_temp_storage->ptr(), temp_storage_bytes, target_lvls_data, keys_out,
        idx_in, idx_out, roi_num);

    int* restore_idx_data =
        restore_index->mutable_data<int>({roi_num, 1}, dev_ctx.GetPlace());
J
jerrywgz 已提交
153
    // sort current index to get restore index
154
    cub::DeviceRadixSort::SortPairs<int, int>(
J
jerrywgz 已提交
155 156 157
        d_temp_storage->ptr(), temp_storage_bytes, idx_out, keys_out, idx_in,
        restore_idx_data, roi_num);

158
    int start = 0;
J
jerrywgz 已提交
159 160 161
    for (int i = 0; i < num_level; ++i) {
      Tensor sub_lod = sub_lod_list.Slice(i, i + 1);
      int* sub_lod_data = sub_lod.data<int>();
J
jerrywgz 已提交
162
      // transfer length-based lod to offset-based lod
163 164 165 166 167 168 169 170
      std::vector<size_t> offset(1, 0);
      std::vector<int> sub_lod_cpu(lod_size);
      memory::Copy(platform::CPUPlace(), sub_lod_cpu.data(), place,
                   sub_lod_data, sizeof(int) * lod_size, dev_ctx.stream());
      dev_ctx.Wait();
      for (int j = 0; j < lod_size; ++j) {
        offset.emplace_back(offset.back() + sub_lod_cpu[j]);
      }
J
jerrywgz 已提交
171

172 173 174 175 176 177 178 179 180 181 182 183 184
      int sub_rois_num = offset.back();

      int end = start + sub_rois_num;
      if (end > start) {
        Tensor sub_idx = index_out_t.Slice(start, end);
        start = end;
        multi_fpn_rois[i]->mutable_data<T>({sub_rois_num, kBoxDim},
                                           dev_ctx.GetPlace());
        GPUGather<T>(dev_ctx, *fpn_rois, sub_idx, multi_fpn_rois[i]);
      } else {
        multi_fpn_rois[i]->mutable_data<T>({sub_rois_num, kBoxDim},
                                           dev_ctx.GetPlace());
      }
J
jerrywgz 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
      framework::LoD lod;
      lod.emplace_back(offset);
      multi_fpn_rois[i]->set_lod(lod);
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    distribute_fpn_proposals,
    ops::GPUDistributeFpnProposalsOpKernel<paddle::platform::CUDADeviceContext,
                                           float>,
    ops::GPUDistributeFpnProposalsOpKernel<paddle::platform::CUDADeviceContext,
                                           double>);