test_reshape_op.py 10.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yibing Liu 已提交
17 18 19
import unittest
import numpy as np

Y
ying 已提交
20
from op_test import OpTest
21
import paddle.fluid as fluid
22
from paddle.fluid import compiler, Program, program_guard
Y
Yibing Liu 已提交
23

C
caoying03 已提交
24

25
# situation 1: have shape( list, no tensor), no actual shape(Tensor)
C
caoying03 已提交
26 27
class TestReshapeOp(OpTest):
    def setUp(self):
28 29 30 31 32 33 34 35
        self.init_data()
        self.op_type = "reshape2"
        self.inputs = {"X": np.random.random(self.ori_shape).astype("float32")}
        self.attrs = {"shape": self.new_shape}
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
            'XShape': np.random.random(self.ori_shape).astype("float32")
        }
Y
ying 已提交
36

37
    def init_data(self):
Z
zhupengyang 已提交
38 39 40
        self.ori_shape = (2, 60)
        self.new_shape = (12, 10)
        self.infered_shape = (12, 10)
41 42

    def test_check_output(self):
43
        self.check_output(no_check_set=['XShape'])
44 45 46 47 48

    def test_check_grad(self):
        self.check_grad(["X"], "Out")


49 50
class TestReshapeOpDimInfer1(TestReshapeOp):
    def init_data(self):
Z
zhupengyang 已提交
51
        self.ori_shape = (5, 25)
52 53
        self.new_shape = (5, -1, 5)
        self.infered_shape = (5, -1, 5)
C
caoying03 已提交
54 55


56 57 58 59 60
class TestReshapeOpDimInfer2(TestReshapeOp):
    def init_data(self):
        self.ori_shape = (2, 2, 6)
        self.new_shape = (2, 0, 3, -1)
        self.infered_shape = (2, 2, 3, -1)
C
caoying03 已提交
61

C
caoying03 已提交
62

63
# situation 2: have shape(list, no tensor), have actual shape(Tensor)
64 65
class TestReshapeOpWithInputShape(OpTest):
    def setUp(self):
66
        self.init_data()
67
        self.op_type = "reshape2"
68

69
        self.inputs = {
70
            "X": np.random.random(self.ori_shape).astype("float32"),
71
            "Shape": np.array(
72
                self.actual_shape, dtype="int32")
73
        }
74
        self.attrs = {"shape": self.new_shape}
75
        self.outputs = {
76 77
            "Out": self.inputs["X"].reshape(self.actual_shape),
            'XShape': np.random.random(self.ori_shape).astype("float32")
78
        }
79

80 81 82 83 84
    def init_data(self):
        self.ori_shape = (6, 5)
        self.new_shape = (0, -1, 5)
        self.actual_shape = (2, 3, 5)

85
    def test_check_output(self):
86
        self.check_output(no_check_set=['XShape'])
87

G
guosheng 已提交
88
    def test_check_grad(self):
C
chengduo 已提交
89
        self.check_grad(["X"], "Out")
90 91


92 93
# Situation 3: have shape(list, have tensor), no actual shape(Tensor)
class TestReshapeOp_attr_ShapeTensor(OpTest):
94 95 96 97 98 99 100 101 102 103 104 105 106
    def setUp(self):
        self.init_data()
        self.op_type = "reshape2"

        shape_tensor = []
        for index, ele in enumerate(self.new_shape):
            shape_tensor.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))

        self.inputs = {
            "X": np.random.random(self.ori_shape).astype("float32"),
            'ShapeTensor': shape_tensor
        }
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
        self.attrs = {'shape': self.shape}
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
            'XShape': np.random.random(self.ori_shape).astype("float32")
        }

    def init_data(self):
        self.ori_shape = (2, 25)
        self.new_shape = (5, 10)
        self.infered_shape = (5, 10)
        self.shape = (-1, -1)

    def test_check_output(self):
        self.check_output(no_check_set=['XShape'])

    def test_check_grad(self):
        self.check_grad(["X"], "Out")


class TestReshapeOpDimInfer1_attr_ShapeTensor(TestReshapeOp_attr_ShapeTensor):
    def init_data(self):
        self.ori_shape = (5, 10)
        self.new_shape = (5, -1, 5)
        self.infered_shape = (5, -1, 5)
        self.shape = (5, -1, -1)


class TestReshapeOpDimInfer2_attr_ShapeTensor(TestReshapeOp_attr_ShapeTensor):
    def init_data(self):
        self.ori_shape = (2, 2, 6)
        self.new_shape = (2, 0, 3, -1)
        self.infered_shape = (2, 2, 3, -1)
        self.shape = (2, 0, 3, -1)


# Situation 4: have shape(Tensor), no actual shape(Tensor)
class TestReshapeOp_attr_OnlyShape(OpTest):
    def setUp(self):
        self.init_data()
        self.op_type = "reshape2"

        self.inputs = {
            "X": np.random.random(self.ori_shape).astype("float32"),
            "Shape": np.array(
                self.new_shape, dtype="int32")
        }
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
        self.attrs = {}
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
            'XShape': np.random.random(self.ori_shape).astype("float32")
        }

    def init_data(self):
        self.ori_shape = (2, 25)
        self.new_shape = (5, 10)
        self.infered_shape = (5, 10)

    def test_check_output(self):
        self.check_output(no_check_set=['XShape'])

    def test_check_grad(self):
        self.check_grad(["X"], "Out")


171
class TestReshapeOpDimInfer1_attr_OnlyShape(TestReshapeOp_attr_OnlyShape):
172 173 174 175
    def init_data(self):
        self.ori_shape = (5, 10)
        self.new_shape = (5, -1, 5)
        self.infered_shape = (5, -1, 5)
176
        self.shape = (5, -1, -1)
177 178


179
class TestReshapeOpDimInfer2_attr_OnlyShape(TestReshapeOp_attr_OnlyShape):
180 181 182 183
    def init_data(self):
        self.ori_shape = (2, 2, 6)
        self.new_shape = (2, 0, 3, -1)
        self.infered_shape = (2, 2, 3, -1)
184 185 186
        self.shape = (2, 0, 3, -1)


187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
# test int8 data type on CPU
class TestReshapeInt8Op(OpTest):
    def setUp(self):
        self.init_dtype()
        self.init_data()
        self.use_mkldnn = True
        self._cpu_only = True
        self.op_type = "reshape2"
        input = np.random.randint(0, 127, self.ori_shape).astype(self.dtype)
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(input)}
        self.attrs = {
            'shape': self.new_shape,
            'use_mkldnn': self.use_mkldnn,
        }
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
            'XShape': np.random.random(self.ori_shape).astype(np.float32)
        }

    def init_dtype(self):
        self.dtype = np.int8

    def init_data(self):
        self.ori_shape = (2, 2, 6)
        self.new_shape = (2, 0, 3, -1)
        self.infered_shape = (2, 2, 3, -1)

    def test_check_output(self):
        self.check_output_with_place(
            fluid.core.CPUPlace(), atol=1e-5, no_check_set=['XShape'])

    def test_check_grad(self):
        pass


# test unt8 data type on CPU
class TestReshapeUint8Op(TestReshapeInt8Op):
    def init_dtype(self):
        self.dtype = np.uint8


228
# Test python API
229
class TestReshapeAPI(unittest.TestCase):
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
    # situation 1: have shape( list, no tensor), no actual shape(Tensor)
    def test_1(self):
        input = np.random.random([2, 25]).astype("float32")
        shape = [2, 5, 5]
        positive_five = fluid.layers.fill_constant([1], "int32", 5)
        x = fluid.layers.data(
            name="x", shape=[2, 25], append_batch_size=False, dtype="float32")

        actual_shape = fluid.layers.data(
            name="shape",
            shape=[1, 3],
            append_batch_size=False,
            dtype="float32")

        # situation 1: have shape( list, no tensor), no actual shape(Tensor)
        out_1 = fluid.layers.reshape(x, shape)
246

247 248
        # situation 2: have shape(list, no tensor), have actual shape(Tensor)
        out_2 = fluid.layers.reshape(x, shape=shape, actual_shape=actual_shape)
249

250 251
        # Situation 3: have shape(list, have tensor), no actual shape(Tensor)
        out_3 = fluid.layers.reshape(x, shape=[positive_five, 10])
252

253 254 255 256 257 258 259 260 261 262 263 264 265 266
        # Situation 4: have shape(Tensor), no actual shape(Tensor)
        out_4 = fluid.layers.reshape(x, shape=actual_shape)

        exe = fluid.Executor(place=fluid.CPUPlace())
        res_1, res_2, res_3, res_4 = exe.run(
            fluid.default_main_program(),
            feed={"x": input,
                  "shape": np.array([2, 5, 5]).astype("int32")},
            fetch_list=[out_1, out_2, out_3, out_4])

        assert np.array_equal(res_1, input.reshape(shape))
        assert np.array_equal(res_2, input.reshape(shape))
        assert np.array_equal(res_3, input.reshape([5, 10]))
        assert np.array_equal(res_4, input.reshape(shape))
267 268


269
# Test Input Error
270
class TestReshapeOpError(unittest.TestCase):
271 272 273 274 275 276 277 278 279 280
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The x type of reshape_op must be Variable.
            def test_x_type():
                x1 = fluid.create_lod_tensor(
                    np.array([[-1]]), [[1]], fluid.CPUPlace())
                fluid.layers.reshape(x1, shape=[1])

            self.assertRaises(TypeError, test_x_type)

281
            # The x dtype of reshape_op must be float16, float32, float64, int32 or int64.
282 283 284 285 286
            def test_x_dtype():
                x2 = fluid.layers.data(
                    name="x2",
                    shape=[2, 25],
                    append_batch_size=False,
287
                    dtype="bool")
288 289 290 291
                fluid.layers.reshape(x2, shape=[2, 5, 5])

            self.assertRaises(TypeError, test_x_dtype)

292 293 294 295 296 297 298 299 300 301
            def test_x_dtype_float16():
                x_float16 = fluid.layers.data(
                    name="x_float16",
                    shape=[2, 25],
                    append_batch_size=False,
                    dtype="float16")
                fluid.layers.reshape(x_float16, shape=[2, 5, 5])

            test_x_dtype_float16()

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
            x3 = fluid.layers.data(
                name="x3",
                shape=[2, 25],
                append_batch_size=False,
                dtype="float32")

            # The argument shape's type of reshape_op must be list, tuple or Variable.
            def test_shape_type():
                fluid.layers.reshape(x3, shape=1)

            self.assertRaises(TypeError, test_shape_type)

            # The argument actual_shape's type of reshape_op must be Variable or None.
            def test_actual_shape_type():
                fluid.layers.reshape(x3, shape=[25, 2], actual_shape=1)

            self.assertRaises(TypeError, test_actual_shape_type)

            # The argument shape have more than one -1.
            def test_shape_1():
                fluid.layers.reshape(x3, shape=[-1, -1, 5])

            self.assertRaises(AssertionError, test_shape_1)

            # The argument shape have element 0 whose index exceed the input dimension.
            def test_shape_2():
                fluid.layers.reshape(x3, [2, 5, 5, 0])

            self.assertRaises(AssertionError, test_shape_2)

            # The argument shape have more than one negtive value.
            def test_shape_3():
                fluid.layers.reshape(x3, [-1, -2, 5])

            self.assertRaises(AssertionError, test_shape_3)


Y
ying 已提交
339
if __name__ == "__main__":
Y
Yibing Liu 已提交
340
    unittest.main()