squeeze_op.cc 17.8 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/operators/squeeze_op.h"
L
Leo Chen 已提交
16

17
#include <memory>
18
#include <string>
19
#include <unordered_map>
20
#include <vector>
L
Leo Chen 已提交
21

Y
yuyang18 已提交
22
#include "paddle/fluid/framework/op_registry.h"
23 24 25 26

namespace paddle {
namespace operators {

L
Leo Chen 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
framework::DDim GetOutputShape(const std::vector<int> squeeze_dims,
                               const framework::DDim &in_dims,
                               bool is_runtime) {
  size_t num_squeeze_dims = squeeze_dims.size();
  std::vector<bool> should_squeeze(in_dims.size(), false);

  // Mark dimensions need to be squeezed.
  if (num_squeeze_dims == 0) {
    for (int i = 0; i < in_dims.size(); ++i) {
      if (in_dims[i] == 1) {
        should_squeeze[i] = true;
      }
    }
  } else {
    for (size_t i = 0; i < num_squeeze_dims; ++i) {
      int current = squeeze_dims[i] < 0 ? squeeze_dims[i] + in_dims.size()
                                        : squeeze_dims[i];

      PADDLE_ENFORCE_GE(
          current, 0,
          platform::errors::InvalidArgument(
              "Each axis in Attr(axes) should be in the range of [%d, %d]"
              "But current axis is:%d, input tensor's shape = [%s].",
              -in_dims.size(), in_dims.size() - 1, current, in_dims));
      PADDLE_ENFORCE_LT(
          current, in_dims.size(),
          platform::errors::InvalidArgument(
              "Each axis in Attr(axes) should be in the range of [%d, %d]"
              "But current axis is:%d, input tensor's shape = [%s].",
              -in_dims.size(), in_dims.size() - 1, current, in_dims));

      if (!should_squeeze[current]) {
        if (is_runtime) {
          // At run time, dim of 1 is allowed to squeeze
          if (in_dims[current] == 1) {
            should_squeeze[current] = true;
          }
        } else {
          // At compile time, dim of -1 or 1 is allowed to squeeze
          if (in_dims[current] == 1 || in_dims[current] == -1) {
            should_squeeze[current] = true;
          }
        }
      }
    }
  }
  // Make output dimensions
  std::vector<int64_t> output_shape;
  for (int i = 0; i < in_dims.size(); ++i) {
    if (!should_squeeze[i]) {
      output_shape.push_back(in_dims[i]);
    }
  }
  return framework::make_ddim(output_shape);
}

83
class SqueezeOp : public framework::OperatorWithKernel {
84
 public:
85 86 87
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
88 89
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Squeeze");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Squeeze");
90

Y
yuyang18 已提交
91
    const auto &x_dims = ctx->GetInputDim("X");
92
    // Check input tensor dims (<6) Eigen limit.
93
    PADDLE_ENFORCE_LE(x_dims.size(), 6,
94 95 96 97 98
                      platform::errors::InvalidArgument(
                          "The dimensions of Input(X) "
                          "should be in the range of [1, 6] (Eigen limit)."
                          "But received X's dimensions = %d, X's shape=[%s].",
                          x_dims.size(), x_dims));
99

Y
yuyang18 已提交
100
    const auto &axes = ctx->Attrs().Get<std::vector<int>>("axes");
L
Leo Chen 已提交
101
    auto out_dims = GetOutputShape(axes, x_dims, false);
102
    ctx->SetOutputDim("Out", out_dims);
103 104 105 106 107
    if (x_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", "Out");
    }
108 109
  }

110 111 112
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
113 114 115
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");

116 117 118 119 120 121 122
    //#ifdef PADDLE_WITH_MKLDNN
    //    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
    //      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
    //                                     framework::DataLayout::kMKLDNN,
    //                                     framework::LibraryType::kMKLDNN);
    //    }
    //#endif
123
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
124
  }
125 126
};

127
class SqueezeGradOp : public framework::OperatorWithKernel {
Y
yuyang18 已提交
128
 public:
129 130 131 132 133 134 135 136 137 138 139
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *context) const override {
    context->SetOutputDim(framework::GradVarName("X"),
                          context->GetInputDim("X"));
    context->ShareLoD("X", framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
140 141 142
    auto input_data_type = framework::OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));

143 144 145 146 147 148 149
    //#ifdef PADDLE_WITH_MKLDNN
    //    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
    //      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
    //                                     framework::DataLayout::kMKLDNN,
    //                                     framework::LibraryType::kMKLDNN);
    //    }
    //#endif
150
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
Y
yuyang18 已提交
151 152 153
  }
};

154 155 156
class SqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
157 158
    AddInput("X", "(Tensor). The input tensor of squeeze operator.");
    AddOutput("Out", "(Tensor). The output tensor of squeeze operator.");
159
    AddAttr<std::vector<int>>("axes",
160
                              "(std::vector<int>). List of integers,"
161
                              " indicating the dimensions to squeeze.")
162
        .SetDefault({});
163 164
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
165 166
        .SetDefault(false)
        .AsExtra();
167 168 169 170
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
171 172
        .InEnum({"float32", "bfloat16"})
        .AsExtra();
173
    AddComment(R"DOC(
Y
yuyang18 已提交
174
        Squeeze Operator.
175 176 177 178

        Remove single-dimensional entries from the shape of a tensor.
        Takes a parameter axes with a list of axes to squeeze.
        If axes is not provided, all the single dimensions will be removed from the shape.
179
        If an axis is selected with shape entry not equal to one, an error is raised.
180

Y
yuyang18 已提交
181 182
        Examples:
        Case 1:
183
          Given
Y
yuyang18 已提交
184 185 186 187 188 189 190 191 192
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:
          Given
            X.shape = (1, 3, 1, 5)
193
          and
194
            axes = []
Y
yuyang18 已提交
195 196
          we get:
            Out.shape = (3, 5)
197 198 199 200
    )DOC");
  }
};

201
class Squeeze2Op : public framework::OperatorWithKernel {
202
 public:
203 204 205
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
206 207
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Squeeze2");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Squeeze2");
208 209 210 211

    const auto &x_dims = ctx->GetInputDim("X");
    // Check input tensor dims (<6) Eigen limit.
    PADDLE_ENFORCE_LE(x_dims.size(), 6,
212 213 214 215 216
                      platform::errors::InvalidArgument(
                          "The dimensions of Input(X) "
                          "should be in the range of [1, 6] (Eigen limit)."
                          "But received X's dimensions = %d, X's shape = [%s].",
                          x_dims.size(), x_dims));
217 218 219

    const auto &axes = ctx->Attrs().Get<std::vector<int>>("axes");

L
Leo Chen 已提交
220
    auto out_dims = GetOutputShape(axes, x_dims, false);
221 222 223 224 225 226 227
    ctx->SetOutputDim("Out", out_dims);
    if (x_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", "Out");
    }

C
ceci3 已提交
228
    if (!ctx->HasOutput("XShape")) return;
229

230 231 232 233 234 235 236
    std::vector<int64_t> xshape_dims(x_dims.size() + 1);
    xshape_dims[0] = 0;
    for (int i = 0; i < x_dims.size(); ++i) {
      xshape_dims[i + 1] = x_dims[i];
    }
    ctx->SetOutputDim("XShape", framework::make_ddim(xshape_dims));
    ctx->ShareLoD("X", /*->*/ "XShape");
237
  }
238 239 240 241 242 243

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");

244 245 246 247 248 249 250
    //#ifdef PADDLE_WITH_MKLDNN
    //    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
    //      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
    //                                     framework::DataLayout::kMKLDNN,
    //                                     framework::LibraryType::kMKLDNN);
    //    }
    //#endif
251 252
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
Y
yuyang18 已提交
253
};
254

255 256 257 258 259
template <typename T>
class SqueezeGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

260
  void Apply(GradOpPtr<T> grad_op) const override {
261 262 263 264 265 266 267 268
    grad_op->SetType("squeeze_grad");
    grad_op->SetInput("X", this->Input("X"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

269
class Squeeze2GradOp : public framework::OperatorWithKernel {
Y
yuyang18 已提交
270
 public:
271 272 273
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *context) const override {
274 275 276 277
    OP_INOUT_CHECK(context->HasInput("XShape"), "Input", "XShape",
                   "Squeeze2Grad");
    OP_INOUT_CHECK(context->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "Squeeze2Grad");
278 279 280 281 282 283 284 285 286
    auto xshape_dims = context->GetInputDim("XShape");
    auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
    context->SetOutputDim(framework::GradVarName("X"), x_dims);
    context->ShareLoD("XShape", framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
287 288 289
    auto input_data_type = framework::OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));

290 291 292 293 294 295 296
    //#ifdef PADDLE_WITH_MKLDNN
    //    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
    //      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
    //                                     framework::DataLayout::kMKLDNN,
    //                                     framework::LibraryType::kMKLDNN);
    //    }
    //#endif
297
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
298 299 300
  }
};

301 302 303 304 305 306 307 308 309 310 311 312 313
template <typename T>
class SqueezeDoubleGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("squeeze");
    grad_op->SetInput("X", this->OutputGrad(framework::GradVarName("X")));
    grad_op->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    grad_op->SetAttrMap(this->Attrs());
  }
};

314 315 316 317 318 319 320 321 322 323 324 325
// FIXME(zcd): squeeze2 adds an intermediate output(XShape) based on squeeze,
// the XShape is used to carry the shape and lod of X which will be used in
// squeeze_grad, in this way, the framework can reuse the memory of X
// immediately the squeeze2_op is finished.
// Considering compatibility issues, we could not fix squeeze2_op
class Squeeze2OpMaker : public SqueezeOpMaker {
 public:
  void Make() override {
    SqueezeOpMaker::Make();
    AddOutput("XShape",
              "XShape is just used to store the shape and lod of X, which will "
              "be used in SqueezeGradOp.")
C
ceci3 已提交
326 327
        .AsIntermediate()
        .AsExtra();
328 329 330
  }
};

H
hong 已提交
331 332
template <typename T>
class Squeeze2GradOpMaker : public framework::SingleGradOpMaker<T> {
333
 public:
H
hong 已提交
334
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
335

336
  void Apply(GradOpPtr<T> grad_op) const override {
337
    grad_op->SetType("squeeze2_grad");
H
hong 已提交
338 339 340 341
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
342 343 344
  }
};

345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
template <typename T>
class Squeeze2DoubleGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("squeeze2");
    grad_op->SetInput("X", this->OutputGrad(framework::GradVarName("X")));
    grad_op->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    grad_op->SetOutput("XShape", this->Input("XShape"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

DECLARE_INPLACE_OP_INFERER(SqueezeInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(SqueezeGradInplaceInferer,
361 362
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
363
DECLARE_NO_NEED_BUFFER_VARS_INFERER(SqueezeGradNoNeedBufferVarsInferer, "X");
364 365 366 367
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
368 369 370 371
REGISTER_OPERATOR(squeeze, ops::SqueezeOp, ops::SqueezeOpMaker,
                  ops::SqueezeGradOpMaker<paddle::framework::OpDesc>,
                  ops::SqueezeGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(squeeze_grad, ops::SqueezeGradOp,
372 373
                  ops::SqueezeDoubleGradOpMaker<paddle::framework::OpDesc>,
                  ops::SqueezeDoubleGradOpMaker<paddle::imperative::OpBase>,
374
                  ops::SqueezeGradNoNeedBufferVarsInferer);
375 376

REGISTER_OPERATOR(squeeze2, ops::Squeeze2Op, ops::Squeeze2OpMaker,
H
hong 已提交
377 378
                  ops::Squeeze2GradOpMaker<paddle::framework::OpDesc>,
                  ops::Squeeze2GradOpMaker<paddle::imperative::OpBase>,
379
                  ops::SqueezeInplaceInferer);
380
REGISTER_OPERATOR(squeeze2_grad, ops::Squeeze2GradOp,
381 382 383
                  ops::Squeeze2DoubleGradOpMaker<paddle::framework::OpDesc>,
                  ops::Squeeze2DoubleGradOpMaker<paddle::imperative::OpBase>,
                  ops::SqueezeGradInplaceInferer);
384 385 386 387

REGISTER_OP_CPU_KERNEL(
    squeeze, ops::SqueezeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SqueezeKernel<paddle::platform::CPUDeviceContext, double>,
388
    ops::SqueezeKernel<paddle::platform::CPUDeviceContext, bool>,
389
    ops::SqueezeKernel<paddle::platform::CPUDeviceContext, int>,
390
    ops::SqueezeKernel<paddle::platform::CPUDeviceContext, uint8_t>,
391
    ops::SqueezeKernel<paddle::platform::CPUDeviceContext, int8_t>,
392 393 394 395
    ops::SqueezeKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::SqueezeKernel<paddle::platform::CPUDeviceContext,
                       paddle::platform::complex<float>>,
    ops::SqueezeKernel<paddle::platform::CPUDeviceContext,
396 397 398
                       paddle::platform::complex<double>>,
    ops::SqueezeKernel<paddle::platform::CPUDeviceContext,
                       paddle::platform::bfloat16>);
399 400 401 402
REGISTER_OP_CPU_KERNEL(
    squeeze_grad,
    ops::SqueezeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SqueezeGradKernel<paddle::platform::CPUDeviceContext, double>,
403
    ops::SqueezeGradKernel<paddle::platform::CPUDeviceContext, bool>,
404
    ops::SqueezeGradKernel<paddle::platform::CPUDeviceContext, int>,
405
    ops::SqueezeGradKernel<paddle::platform::CPUDeviceContext, uint8_t>,
406
    ops::SqueezeGradKernel<paddle::platform::CPUDeviceContext, int8_t>,
407 408 409 410
    ops::SqueezeGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::SqueezeGradKernel<paddle::platform::CPUDeviceContext,
                           paddle::platform::complex<float>>,
    ops::SqueezeGradKernel<paddle::platform::CPUDeviceContext,
411 412 413
                           paddle::platform::complex<double>>,
    ops::SqueezeGradKernel<paddle::platform::CPUDeviceContext,
                           paddle::platform::bfloat16>);
414

415 416 417
REGISTER_OP_CPU_KERNEL(
    squeeze2, ops::Squeeze2Kernel<paddle::platform::CPUDeviceContext, float>,
    ops::Squeeze2Kernel<paddle::platform::CPUDeviceContext, double>,
418
    ops::Squeeze2Kernel<paddle::platform::CPUDeviceContext, bool>,
419
    ops::Squeeze2Kernel<paddle::platform::CPUDeviceContext, int>,
420
    ops::Squeeze2Kernel<paddle::platform::CPUDeviceContext, uint8_t>,
421
    ops::Squeeze2Kernel<paddle::platform::CPUDeviceContext, int8_t>,
422 423 424 425
    ops::Squeeze2Kernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::Squeeze2Kernel<paddle::platform::CPUDeviceContext,
                        paddle::platform::complex<float>>,
    ops::Squeeze2Kernel<paddle::platform::CPUDeviceContext,
426 427 428
                        paddle::platform::complex<double>>,
    ops::Squeeze2Kernel<paddle::platform::CPUDeviceContext,
                        paddle::platform::bfloat16>);
429

430 431 432 433
REGISTER_OP_CPU_KERNEL(
    squeeze2_grad,
    ops::Squeeze2GradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::Squeeze2GradKernel<paddle::platform::CPUDeviceContext, double>,
434
    ops::Squeeze2GradKernel<paddle::platform::CPUDeviceContext, bool>,
435
    ops::Squeeze2GradKernel<paddle::platform::CPUDeviceContext, int>,
436
    ops::Squeeze2GradKernel<paddle::platform::CPUDeviceContext, uint8_t>,
437
    ops::Squeeze2GradKernel<paddle::platform::CPUDeviceContext, int8_t>,
438 439 440 441
    ops::Squeeze2GradKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::Squeeze2GradKernel<paddle::platform::CPUDeviceContext,
                            paddle::platform::complex<float>>,
    ops::Squeeze2GradKernel<paddle::platform::CPUDeviceContext,
442 443 444
                            paddle::platform::complex<double>>,
    ops::Squeeze2GradKernel<paddle::platform::CPUDeviceContext,
                            paddle::platform::bfloat16>);