fusion_conv_inception_op.cu 12.8 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
17
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
Q
qingqing01 已提交
18 19 20 21 22 23

DECLARE_uint64(conv_workspace_size_limit);

namespace paddle {
namespace operators {

24
#if CUDNN_VERSION >= 7100
Q
qingqing01 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using ScopedActivationDescriptor = platform::ScopedActivationDescriptor;
using DataLayout = platform::DataLayout;

using ScopedPoolingDescriptor = platform::ScopedPoolingDescriptor;
using PoolingMode = platform::PoolingMode;
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;

template <typename T>
using CudnnDataType = platform::CudnnDataType<T>;

template <typename T>
class CUDNNConvInceptionFusionOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto* input = ctx.Input<Tensor>("Input");
    auto filters = ctx.MultiInput<framework::Tensor>("Filter");
    auto bias = ctx.MultiInput<framework::Tensor>("Bias");

    auto* output = ctx.Output<Tensor>("Output");
    auto temp_outs = ctx.MultiOutput<framework::Tensor>("TempOutput");

    const std::string pool_type = ctx.Attr<std::string>("pooling_type");
    const std::string activation = ctx.Attr<std::string>("activation");
    const bool exclusive = ctx.Attr<bool>("exclusive");

    int64_t user_workspace_size =
        static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));

    const T* input_data = input->data<T>();
    T* output_data = output->mutable_data<T>(ctx.GetPlace());
    T* temp_data = temp_outs[0]->mutable_data<T>(input->dims(), ctx.GetPlace());

    DataLayout layout = DataLayout::kNCHW;
64
    std::vector<int> in_dim = framework::vectorize<int>(input->dims());
Q
qingqing01 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

    // ------------------- cudnn descriptors ---------------------
    PoolingMode pooling_mode;
    if (pool_type == "max") {
      pooling_mode = PoolingMode::kMaximum;
    } else {
      pooling_mode = exclusive ? PoolingMode::kAverageExclusive
                               : (PoolingMode::kAverageInclusive);
    }
    std::vector<int> k0x0 = {0, 0};
    std::vector<int> k1x1 = {1, 1};
    std::vector<int> k1x1_2 = {1, 1};
    std::vector<int> k3x3 = {3, 3};
    ScopedPoolingDescriptor pool_desc;
    ScopedActivationDescriptor act_desc;
    ScopedTensorDescriptor out_pool_desc;
    ScopedTensorDescriptor input_desc;
    cudnnPoolingDescriptor_t cudnn_pool_desc =
        pool_desc.descriptor(pooling_mode, k3x3, k1x1, k1x1);

    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
86
        layout, framework::vectorize<int>(input->dims()));
Q
qingqing01 已提交
87
    cudnnTensorDescriptor_t pool_out_desc = out_pool_desc.descriptor<T>(
88
        layout, framework::vectorize<int>(input->dims()));
Q
qingqing01 已提交
89 90 91 92 93 94 95 96 97

    cudnnDataType_t cudnn_dtype = CudnnDataType<T>::type;
    cudnnTensorDescriptor_t* out_desc = new cudnnTensorDescriptor_t[4];
    cudnnFilterDescriptor_t* filter_desc = new cudnnFilterDescriptor_t[4];
    cudnnTensorDescriptor_t* bias_desc = new cudnnTensorDescriptor_t[4];
    cudnnTensorDescriptor_t* in_desc = new cudnnTensorDescriptor_t[4];
    cudnnConvolutionDescriptor_t* conv_desc =
        new cudnnConvolutionDescriptor_t[4];
    for (int i = 0; i < 4; ++i) {
98
      PADDLE_ENFORCE_GPU_SUCCESS(
Q
qingqing01 已提交
99
          platform::dynload::cudnnCreateFilterDescriptor(&filter_desc[i]));
100
      PADDLE_ENFORCE_GPU_SUCCESS(
Q
qingqing01 已提交
101
          platform::dynload::cudnnCreateTensorDescriptor(&bias_desc[i]));
102
      PADDLE_ENFORCE_GPU_SUCCESS(
Q
qingqing01 已提交
103
          platform::dynload::cudnnCreateTensorDescriptor(&in_desc[i]));
104
      PADDLE_ENFORCE_GPU_SUCCESS(
Q
qingqing01 已提交
105
          platform::dynload::cudnnCreateTensorDescriptor(&out_desc[i]));
106
      PADDLE_ENFORCE_GPU_SUCCESS(
Q
qingqing01 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
          platform::dynload::cudnnCreateConvolutionDescriptor(&conv_desc[i]));
    }

    std::vector<std::vector<int>> filter_dims;
    std::vector<std::vector<int>> bias_dims;
    std::vector<std::vector<int>> in_dims;
    std::vector<std::vector<int>> out_dims;
    std::vector<std::vector<int>> in_strides;
    std::vector<std::vector<int>> out_strides;
    std::vector<std::vector<int>> bias_strides;

    cudnnTensorFormat_t format = CUDNN_TENSOR_NCHW;
    int n = in_dim[0];
    int h = in_dim[2];
    int w = in_dim[3];
    int oc = output->dims()[1];

    cudnnDataType_t compute_type = (cudnn_dtype == CUDNN_DATA_DOUBLE)
                                       ? CUDNN_DATA_DOUBLE
                                       : CUDNN_DATA_FLOAT;

    for (int i = 0; i < 4; ++i) {
129
      filter_dims.push_back(framework::vectorize<int>(filters[i]->dims()));
130
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetFilterNdDescriptor(
Q
qingqing01 已提交
131 132 133
          filter_desc[i], cudnn_dtype, format, 4, filter_dims[i].data()));
      bias_dims.push_back({1, filter_dims[i][0], 1, 1});
      bias_strides.push_back({filter_dims[i][0], 1, 1, 1});
134
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
Q
qingqing01 已提交
135 136 137 138 139 140 141 142
          bias_desc[i], cudnn_dtype, 4, bias_dims[i].data(),
          bias_strides[i].data()));
      in_dims.push_back({n, filter_dims[i][1], h, w});
      out_dims.push_back({n, filter_dims[i][0], h, w});
      in_strides.push_back({filter_dims[i][1] * h * w, h * w, w, 1});
      out_strides.push_back({oc * h * w, h * w, w, 1});

      if (i < 2) {
143
        PADDLE_ENFORCE_GPU_SUCCESS(
144 145 146
            platform::dynload::cudnnSetConvolutionNdDescriptor(
                conv_desc[i], 2, k0x0.data(), k1x1.data(), k1x1.data(),
                CUDNN_CROSS_CORRELATION, compute_type));
Q
qingqing01 已提交
147
      } else {
148
        PADDLE_ENFORCE_GPU_SUCCESS(
149 150 151
            platform::dynload::cudnnSetConvolutionNdDescriptor(
                conv_desc[i], 2, k1x1.data(), k1x1.data(), k1x1.data(),
                CUDNN_CROSS_CORRELATION, compute_type));
Q
qingqing01 已提交
152
      }
153 154
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
          conv_desc[i], CUDNN_DEFAULT_MATH));
A
AshburnLee 已提交
155
#if CUDA_VERSION >= 11000 && CUDNN_VERSION >= 8000
A
AshburnLee 已提交
156
      if (!platform::allow_tf32_cudnn) {
157
        PADDLE_ENFORCE_GPU_SUCCESS(
A
AshburnLee 已提交
158 159 160
            platform::dynload::cudnnSetConvolutionMathType(conv_desc[i],
                                                           CUDNN_FMA_MATH));
      }
A
AshburnLee 已提交
161
#endif  // CUDA_VERSION >= 11000 && CUDNN_VERSION >= 8000
Q
qingqing01 已提交
162 163 164 165 166
    }
    in_dims[2][1] *= 2;
    in_strides[2][0] = oc * h * w;
    out_strides[2][0] = filter_dims[2][0] * h * w;  // this out is continuous.
    in_strides[3][0] = filter_dims[2][0] * h * w;
167
    PADDLE_ENFORCE_GPU_SUCCESS(
Q
qingqing01 已提交
168 169 170 171 172 173
        platform::dynload::cudnnSetConvolutionGroupCount(conv_desc[2], 2));

    cudnnConvolutionFwdAlgo_t algo[4];
    auto handle = dev_ctx.cudnn_handle();
    size_t workspace_size_in_bytes = 0;  // final workspace to allocate.

174
    size_t workspace_size_limit = 0;
Q
qingqing01 已提交
175 176
    if (FLAGS_conv_workspace_size_limit > 0 || user_workspace_size > 0) {
      int64_t max_user_size =
177
          std::min(static_cast<int64_t>(FLAGS_conv_workspace_size_limit),
Q
qingqing01 已提交
178 179 180 181 182
                   user_workspace_size);
      workspace_size_limit = max_user_size * 1024 * 1024;
    }

    for (int i = 0; i < 4; ++i) {
183
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
Q
qingqing01 已提交
184
          in_desc[i], cudnn_dtype, 4, in_dims[i].data(), in_strides[i].data()));
185
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
Q
qingqing01 已提交
186 187
          out_desc[i], cudnn_dtype, 4, out_dims[i].data(),
          out_strides[i].data()));
188 189 190 191 192 193

      int perf_count;
      int best_algo_idx = 0;
      size_t tmp_size = 0;
      std::unique_ptr<cudnnConvolutionFwdAlgoPerf_t[]> perf_results(
          new cudnnConvolutionFwdAlgoPerf_t[kNUM_CUDNN_FWD_ALGS]);
194
      PADDLE_ENFORCE_GPU_SUCCESS(
195
          platform::dynload::cudnnGetConvolutionForwardAlgorithm_v7(
196
              handle, in_desc[i], filter_desc[i], conv_desc[i], out_desc[i],
197 198 199
              kNUM_CUDNN_FWD_ALGS, &perf_count, perf_results.get()));
      algo[i] = (perf_results.get())[best_algo_idx].algo;

200
      PADDLE_ENFORCE_GPU_SUCCESS(
201 202 203
          platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
              handle, in_desc[i], filter_desc[i], conv_desc[i], out_desc[i],
              algo[i], &tmp_size));
204

Q
qingqing01 已提交
205 206 207 208 209 210 211 212 213 214 215 216
      workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size);
    }
    cudnnActivationDescriptor_t cudnn_act_desc =
        act_desc.descriptor<T>(activation);

    int oc0 = filter_dims[0][0];
    int oc1 = filter_dims[1][0] - filter_dims[2][1] * 2;
    int oc3 = filter_dims[3][0];
    int oc2 = oc - oc0 - oc1 - oc3;

    // branch1: pool + 1x1 conv
    ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
217
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnPoolingForward(
Q
qingqing01 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
        handle, cudnn_pool_desc, &alpha, cudnn_input_desc, input_data, &beta,
        pool_out_desc, temp_data));

    std::vector<const void*> in_datas;
    in_datas.push_back(static_cast<const void*>(temp_data));
    in_datas.push_back(static_cast<const void*>(input_data));
    in_datas.push_back(
        static_cast<const void*>(output_data + (oc0 + oc1) * h * w));
    T* temp2_data = temp_outs[1]->mutable_data<T>(
        framework::make_ddim(out_dims[2]), ctx.GetPlace());
    in_datas.push_back(static_cast<const void*>(temp2_data + oc2 * h * w));

    std::vector<void*> out_datas;
    out_datas.push_back(static_cast<void*>(output_data));
    out_datas.push_back(static_cast<void*>(output_data + oc0 * h * w));
    out_datas.push_back(static_cast<void*>(temp2_data));
    out_datas.push_back(
        static_cast<void*>(output_data + (oc0 + oc1 + oc2) * h * w));

    for (int i = 0; i < 4; ++i) {
C
chengduo 已提交
238
      auto func = [&](void* cudnn_workspace) {
239
        PADDLE_ENFORCE_GPU_SUCCESS(
240 241 242 243 244 245 246
            platform::dynload::cudnnConvolutionBiasActivationForward(
                handle, &alpha, in_desc[i], in_datas[i], filter_desc[i],
                static_cast<const void*>(filters[i]->data<T>()), conv_desc[i],
                algo[i], cudnn_workspace, workspace_size_in_bytes, &beta,
                out_desc[i], out_datas[i], bias_desc[i],
                static_cast<const void*>(bias[i]->data<T>()), cudnn_act_desc,
                out_desc[i], out_datas[i]));
C
chengduo 已提交
247 248 249
      };
      auto workspace_handle = dev_ctx.cudnn_workspace_handle();
      workspace_handle.RunFunc(func, workspace_size_in_bytes);
Q
qingqing01 已提交
250 251 252 253
    }

    cudnnTensorDescriptor_t x_desc;
    cudnnTensorDescriptor_t y_desc;
254
    PADDLE_ENFORCE_GPU_SUCCESS(
255
        platform::dynload::cudnnCreateTensorDescriptor(&x_desc));
256
    PADDLE_ENFORCE_GPU_SUCCESS(
257
        platform::dynload::cudnnCreateTensorDescriptor(&y_desc));
258
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
Q
qingqing01 已提交
259
        x_desc, cudnn_dtype, 4, out_dims[3].data(), out_strides[2].data()));
260
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
Q
qingqing01 已提交
261
        y_desc, cudnn_dtype, 4, out_dims[3].data(), out_strides[3].data()));
262
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnTransformTensor(
Q
qingqing01 已提交
263 264 265 266 267
        handle, CudnnDataType<T>::kOne(), x_desc,
        static_cast<const void*>(out_datas[2]), CudnnDataType<T>::kZero(),
        y_desc, static_cast<void*>(output_data + (oc0 + oc1) * h * w)));

    for (int i = 0; i < 4; ++i) {
268
      PADDLE_ENFORCE_GPU_SUCCESS(
Q
qingqing01 已提交
269
          platform::dynload::cudnnDestroyTensorDescriptor(in_desc[i]));
270
      PADDLE_ENFORCE_GPU_SUCCESS(
Q
qingqing01 已提交
271
          platform::dynload::cudnnDestroyTensorDescriptor(out_desc[i]));
272
      PADDLE_ENFORCE_GPU_SUCCESS(
Q
qingqing01 已提交
273
          platform::dynload::cudnnDestroyFilterDescriptor(filter_desc[i]));
274
      PADDLE_ENFORCE_GPU_SUCCESS(
Q
qingqing01 已提交
275
          platform::dynload::cudnnDestroyTensorDescriptor(bias_desc[i]));
276
      PADDLE_ENFORCE_GPU_SUCCESS(
Q
qingqing01 已提交
277 278
          platform::dynload::cudnnDestroyConvolutionDescriptor(conv_desc[i]));
    }
279
    PADDLE_ENFORCE_GPU_SUCCESS(
280
        platform::dynload::cudnnDestroyTensorDescriptor(x_desc));
281
    PADDLE_ENFORCE_GPU_SUCCESS(
282
        platform::dynload::cudnnDestroyTensorDescriptor(y_desc));
Q
qingqing01 已提交
283 284 285 286 287 288 289
  }
};
#endif

}  // namespace operators
}  // namespace paddle

290
#if CUDNN_VERSION >= 7100
Q
qingqing01 已提交
291 292 293 294 295
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(conv2d_inception_fusion,
                        ops::CUDNNConvInceptionFusionOpKernel<float>,
                        ops::CUDNNConvInceptionFusionOpKernel<double>);
#endif