math_function.cu 13.8 KB
Newer Older
Q
qijun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#define EIGEN_USE_GPU
Y
Fix CI  
Yu Yang 已提交
16
#include "paddle/framework/data_type.h"
Q
qijun 已提交
17
#include "paddle/operators/math/math_function.h"
18
#include "paddle/operators/math/math_function_impl.h"
Q
qijun 已提交
19

Q
qijun 已提交
20 21 22 23 24
namespace paddle {
namespace operators {
namespace math {

template <>
25 26
void gemm<platform::GPUPlace, float>(const platform::DeviceContext& context,
                                     const CBLAS_TRANSPOSE transA,
Q
qijun 已提交
27 28 29
                                     const CBLAS_TRANSPOSE transB, const int M,
                                     const int N, const int K,
                                     const float alpha, const float* A,
30 31
                                     const float* B, const float beta,
                                     float* C) {
Q
qijun 已提交
32 33
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
Q
qijun 已提交
34 35
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
Q
qijun 已提交
36
  cublasOperation_t cuTransA =
Q
qijun 已提交
37
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
Q
qijun 已提交
38
  cublasOperation_t cuTransB =
Q
qijun 已提交
39
      (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
Q
qijun 已提交
40

Q
qijun 已提交
41
  PADDLE_ENFORCE(platform::dynload::cublasSgemm(
42 43
      reinterpret_cast<const platform::CUDADeviceContext&>(context)
          .cublas_handle(),
Q
qijun 已提交
44
      cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, lda, &beta, C, N));
Q
qijun 已提交
45 46 47
}

template <>
48 49
void gemm<platform::GPUPlace, double>(const platform::DeviceContext& context,
                                      const CBLAS_TRANSPOSE transA,
Q
qijun 已提交
50 51 52 53
                                      const CBLAS_TRANSPOSE transB, const int M,
                                      const int N, const int K,
                                      const double alpha, const double* A,
                                      const double* B, const double beta,
54
                                      double* C) {
Q
qijun 已提交
55 56
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
Q
qijun 已提交
57 58
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
Q
qijun 已提交
59
  cublasOperation_t cuTransA =
Q
qijun 已提交
60
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
Q
qijun 已提交
61
  cublasOperation_t cuTransB =
Q
qijun 已提交
62
      (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
Q
qijun 已提交
63
  PADDLE_ENFORCE(platform::dynload::cublasDgemm(
64 65
      reinterpret_cast<const platform::CUDADeviceContext&>(context)
          .cublas_handle(),
Q
qijun 已提交
66
      cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, lda, &beta, C, N));
Q
qijun 已提交
67 68
}

G
guosheng 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
template <>
void gemm<platform::GPUPlace, float>(const platform::DeviceContext& context,
                                     const bool transA, const bool transB,
                                     const int M, const int N, const int K,
                                     const float alpha, const float* A,
                                     const int lda, const float* B,
                                     const int ldb, const float beta, float* C,
                                     const int ldc) {
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  cublasOperation_t cuTransA = transA == false ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasOperation_t cuTransB = transB == false ? CUBLAS_OP_N : CUBLAS_OP_T;
  PADDLE_ENFORCE(platform::dynload::cublasSgemm(
      reinterpret_cast<const platform::CUDADeviceContext&>(context)
          .cublas_handle(),
      cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, lda, &beta, C, ldc));
}

template <>
void gemm<platform::GPUPlace, double>(const platform::DeviceContext& context,
                                      const bool transA, const bool transB,
                                      const int M, const int N, const int K,
                                      const double alpha, const double* A,
                                      const int lda, const double* B,
                                      const int ldb, const double beta,
                                      double* C, const int ldc) {
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  cublasOperation_t cuTransA = transA == false ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasOperation_t cuTransB = transB == false ? CUBLAS_OP_N : CUBLAS_OP_T;
  PADDLE_ENFORCE(platform::dynload::cublasDgemm(
      reinterpret_cast<const platform::CUDADeviceContext&>(context)
          .cublas_handle(),
      cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, lda, &beta, C, ldc));
}

Q
qijun 已提交
105
template <>
106 107 108 109
void matmul<platform::GPUPlace, float>(
    const platform::DeviceContext& context, const framework::Tensor& matrix_a,
    bool trans_a, const framework::Tensor& matrix_b, bool trans_b, float alpha,
    framework::Tensor* matrix_out, float beta) {
Q
qijun 已提交
110 111 112 113 114 115 116 117 118
  auto dim_a = matrix_a.dims();
  auto dim_b = matrix_b.dims();
  auto dim_out = matrix_out->dims();
  PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2,
                 "The input and output of matmul be matrix");

  PADDLE_ENFORCE(platform::is_gpu_place(matrix_a.place()) &&
                     platform::is_gpu_place(matrix_b.place()) &&
                     platform::is_gpu_place(matrix_out->place()),
Q
qijun 已提交
119
                 "Matrix must all be in GPUPlace");
Q
qijun 已提交
120

Q
qijun 已提交
121 122 123
  int M = dim_out[0];
  int N = dim_out[1];
  int K = (trans_a == false) ? dim_a[1] : dim_a[0];
Q
qijun 已提交
124

Q
qijun 已提交
125 126
  CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans;
Q
qijun 已提交
127

Q
qijun 已提交
128
  gemm<platform::GPUPlace, float>(
129 130
      context, transA, transB, M, N, K, alpha, matrix_a.data<float>(),
      matrix_b.data<float>(), beta, matrix_out->data<float>());
Q
qijun 已提交
131 132 133
}

template <>
134 135 136 137
void matmul<platform::GPUPlace, double>(
    const platform::DeviceContext& context, const framework::Tensor& matrix_a,
    bool trans_a, const framework::Tensor& matrix_b, bool trans_b, double alpha,
    framework::Tensor* matrix_out, double beta) {
Q
qijun 已提交
138 139 140 141 142 143 144 145 146
  auto dim_a = matrix_a.dims();
  auto dim_b = matrix_b.dims();
  auto dim_out = matrix_out->dims();
  PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2,
                 "The input and output of matmul be matrix");

  PADDLE_ENFORCE(platform::is_gpu_place(matrix_a.place()) &&
                     platform::is_gpu_place(matrix_b.place()) &&
                     platform::is_gpu_place(matrix_out->place()),
Q
qijun 已提交
147
                 "Matrix must all be in GPUPlace");
Q
qijun 已提交
148

Q
qijun 已提交
149 150 151 152 153 154
  int M = dim_out[0];
  int N = dim_out[1];
  int K = (trans_a == false) ? dim_a[1] : dim_a[0];

  CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans;
Q
qijun 已提交
155

Q
qijun 已提交
156
  gemm<platform::GPUPlace, double>(
157 158
      context, transA, transB, M, N, K, alpha, matrix_a.data<double>(),
      matrix_b.data<double>(), beta, matrix_out->data<double>());
Q
qijun 已提交
159
}
Q
qijun 已提交
160

M
Markus Kliegl 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
template <>
void batched_gemm<platform::GPUPlace, float>(
    const platform::DeviceContext& context, const CBLAS_TRANSPOSE transA,
    const CBLAS_TRANSPOSE transB, const int M, const int N, const int K,
    const float alpha, const float* A, const float* B, const float beta,
    float* C, const int batchCount, const int strideA, const int strideB) {
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
  cublasOperation_t cuTransA =
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasOperation_t cuTransB =
      (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  const int strideC = M * N;

  PADDLE_ENFORCE(platform::dynload::cublasSgemmStridedBatched(
      reinterpret_cast<const platform::CUDADeviceContext&>(context)
          .cublas_handle(),
      cuTransB, cuTransA, N, M, K, &alpha, B, ldb, strideB, A, lda, strideA,
      &beta, C, ldc, strideC, batchCount));
}

template <>
void batched_gemm<platform::GPUPlace, double>(
    const platform::DeviceContext& context, const CBLAS_TRANSPOSE transA,
    const CBLAS_TRANSPOSE transB, const int M, const int N, const int K,
    const double alpha, const double* A, const double* B, const double beta,
    double* C, const int batchCount, const int strideA, const int strideB) {
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
  cublasOperation_t cuTransA =
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasOperation_t cuTransB =
      (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  const int strideC = M * N;

  PADDLE_ENFORCE(platform::dynload::cublasDgemmStridedBatched(
      reinterpret_cast<const platform::CUDADeviceContext&>(context)
          .cublas_handle(),
      cuTransB, cuTransA, N, M, K, &alpha, B, ldb, strideB, A, lda, strideA,
      &beta, C, ldc, strideC, batchCount));
}

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
template <>
void gemv<platform::GPUPlace, float>(const platform::DeviceContext& context,
                                     const bool trans_a, const int M,
                                     const int N, const float alpha,
                                     const float* A, const float* B,
                                     const float beta, float* C) {
  cublasOperation_t cuTransA = (trans_a == false) ? CUBLAS_OP_T : CUBLAS_OP_N;

  PADDLE_ENFORCE(platform::dynload::cublasSgemv(
      reinterpret_cast<const platform::CUDADeviceContext&>(context)
          .cublas_handle(),
      cuTransA, N, M, &alpha, A, N, B, 1, &beta, C, 1));
}

template <>
void gemv<platform::GPUPlace, double>(const platform::DeviceContext& context,
                                      const bool trans_a, const int M,
                                      const int N, const double alpha,
                                      const double* A, const double* B,
                                      const double beta, double* C) {
  cublasOperation_t cuTransA = (trans_a == false) ? CUBLAS_OP_T : CUBLAS_OP_N;
  PADDLE_ENFORCE(platform::dynload::cublasDgemv(
      reinterpret_cast<const platform::CUDADeviceContext&>(context)
          .cublas_handle(),
      cuTransA, N, M, &alpha, A, N, B, 1, &beta, C, 1));
}

236 237 238 239 240 241 242
template <>
void axpy<platform::GPUPlace, float>(const platform::DeviceContext& context,
                                     const int n, const float alpha,
                                     const float* x, float* y) {
  PADDLE_ENFORCE(platform::dynload::cublasSaxpy(
      reinterpret_cast<const platform::CUDADeviceContext&>(context)
          .cublas_handle(),
D
dangqingqing 已提交
243
      n, &alpha, x, 1, y, 1));
244 245 246 247 248 249 250 251 252
}

template <>
void axpy<platform::GPUPlace, double>(const platform::DeviceContext& context,
                                      const int n, const double alpha,
                                      const double* x, double* y) {
  PADDLE_ENFORCE(platform::dynload::cublasDaxpy(
      reinterpret_cast<const platform::CUDADeviceContext&>(context)
          .cublas_handle(),
D
dangqingqing 已提交
253
      n, &alpha, x, 1, y, 1));
254 255
}

256
template struct SetConstant<platform::GPUPlace, float>;
257 258
template struct SetConstant<platform::GPUPlace, double>;
template struct SetConstant<platform::GPUPlace, int>;
Y
Yang Yang(Tony) 已提交
259 260
template struct SetConstant<platform::GPUPlace, int64_t>;
template struct SetConstant<platform::GPUPlace, bool>;
261 262 263 264 265 266 267 268 269 270 271

#define DEFINE_GPU_TRANS(RANK)                                \
  template struct Transpose<platform::GPUPlace, float, RANK>; \
  template struct Transpose<platform::GPUPlace, double, RANK>;

DEFINE_GPU_TRANS(1);
DEFINE_GPU_TRANS(2);
DEFINE_GPU_TRANS(3);
DEFINE_GPU_TRANS(4);
DEFINE_GPU_TRANS(5);
DEFINE_GPU_TRANS(6);
Q
qijun 已提交
272

273 274
struct TensorSetConstantGPU {
  TensorSetConstantGPU(const platform::DeviceContext& context,
D
dangqingqing 已提交
275
                       framework::Tensor* tensor, float value)
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
      : context_(context), tensor_(tensor), value_(value) {}

  template <typename T>
  void operator()() const {
    SetConstant<platform::GPUPlace, T> functor;
    functor(context_, tensor_, static_cast<T>(value_));
  }

  const platform::DeviceContext& context_;
  framework::Tensor* tensor_;
  float value_;
};

template <>
void set_constant_with_place<platform::GPUPlace>(
    const platform::DeviceContext& context, framework::Tensor* tensor,
    float value) {
  framework::VisitDataType(framework::ToDataType(tensor->type()),
294
                           TensorSetConstantGPU(context, tensor, value));
295 296
}

297 298 299
template struct RowwiseAdd<platform::GPUPlace, float>;
template struct RowwiseAdd<platform::GPUPlace, double>;
template struct ColwiseSum<platform::GPUPlace, float>;
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
// template struct ColwiseSum<platform::GPUPlace, double>;
// The ColwiseSum<platform::GPUPlace, double> failed in debug mode,
// and only failed for this case. So reimplemented it.
template <>
void ColwiseSum<platform::GPUPlace, double>::operator()(
    const platform::DeviceContext& context, const framework::Tensor& input,
    framework::Tensor* vector) {
  auto in_dims = input.dims();
  auto size = input.numel() / in_dims[0];
  PADDLE_ENFORCE_EQ(vector->numel(), size);
  framework::Tensor one;
  one.mutable_data<double>({in_dims[0]}, context.GetPlace());
  SetConstant<platform::GPUPlace, double> set;
  set(context, &one, static_cast<double>(1.0));
  gemv<platform::GPUPlace, double>(context, true, static_cast<int>(in_dims[0]),
                                   static_cast<int>(in_dims[1]), 1.0,
                                   input.data<double>(), one.data<double>(),
                                   0.0, vector->data<double>());
}
319

Q
qijun 已提交
320 321 322
}  // namespace math
}  // namespace operators
}  // namespace paddle