activation_op.h 25.9 KB
Newer Older
Q
qijun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

22 23 24
template <typename Place, typename Functor>
class ActivationKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
Q
qijun 已提交
25
 public:
26 27
  using T = typename Functor::ELEMENT_TYPE;

Q
qijun 已提交
28 29 30 31 32 33 34 35 36
  void Compute(const framework::ExecutionContext& context) const override {
    auto* X = context.Input<framework::Tensor>("X");
    auto* Y = context.Output<framework::Tensor>("Y");
    Y->mutable_data<T>(context.GetPlace());

    auto x = framework::EigenVector<T>::Flatten(*X);
    auto y = framework::EigenVector<T>::Flatten(*Y);
    auto place = context.GetEigenDevice<Place>();
    Functor functor;
37 38 39 40 41

    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
Q
qijun 已提交
42 43 44 45
    functor(place, x, y);
  }
};

46 47 48
template <typename Place, typename Functor>
class ActivationGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
Q
qijun 已提交
49
 public:
50
  using T = typename Functor::ELEMENT_TYPE;
Q
qijun 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63
  void Compute(const framework::ExecutionContext& context) const override {
    auto* X = context.Input<framework::Tensor>("X");
    auto* Y = context.Input<framework::Tensor>("Y");
    auto* dY = context.Input<framework::Tensor>(framework::GradVarName("Y"));
    auto* dX = context.Output<framework::Tensor>(framework::GradVarName("X"));
    dX->mutable_data<T>(context.GetPlace());

    auto dy = framework::EigenVector<T>::Flatten(*dY);
    auto x = framework::EigenVector<T>::Flatten(*X);
    auto y = framework::EigenVector<T>::Flatten(*Y);
    auto dx = framework::EigenVector<T>::Flatten(*dX);
    auto place = context.GetEigenDevice<Place>();
    Functor functor;
64 65 66 67
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
Q
qijun 已提交
68 69 70 71
    functor(place, x, y, dy, dx);
  }
};

72 73 74 75 76 77 78 79 80
template <typename T>
struct BaseActivationFunctor {
  using ELEMENT_TYPE = T;

  using AttrPair = std::vector<std::pair<const char*, float*>>;

  AttrPair GetAttrs() { return AttrPair(); }
};

81
// sigmoid(x) = 1 / (1 + exp(-x))
Q
qijun 已提交
82
template <typename T>
83
struct SigmoidFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
84
  template <typename Device, typename X, typename Y>
85
  void operator()(Device d, X x, Y y) const {
86
    y.device(d) = static_cast<T>(1) / (static_cast<T>(1) + (-x).exp());
Q
qijun 已提交
87 88 89
  }
};

90
template <typename T>
91
struct SigmoidGradFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
92
  template <typename Device, typename X, typename Y, typename dY, typename dX>
93
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
94
    dx.device(d) = dy * y * (static_cast<T>(1) - y);
Q
qijun 已提交
95 96 97
  }
};

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
// Originally: logsigmoid(x) = -log (1 + exp(-x))
// For numerical stability, we can use the log-sum-exp trick:
// https://hips.seas.harvard.edu/blog/2013/01/09/computing-log-sum-exp/
// We can rewrite the above equation as:
// y = -log( exp(0) + exp(-x)) [since exp(0) = 1]
//   = -log( exp(max(-x, 0) - max(-x, 0)) + exp(-x + max(-x, 0) - max(-x, 0)))
//   = -log( exp(max(-x, 0)) * exp(-max(-x, 0)) - exp(max(-x, 0)) * exp(-x -
//           max(-x, 0)))
//   = -log( exp(max(-x, 0)) * (exp(-max(-x, 0)) + exp(-x - max(-x, 0))))
//   = -log( exp(max(-x, 0)) - log(exp(-max(-x, 0)) + exp(-x - max(-x, 0)))
//
// Hence, logsigmoid(x) = - (max(-x, 0) + log(exp(-max(-x, 0))
// + exp(-x - max(-x, 0))))
template <typename T>
struct LogSigmoidFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) const {
    auto temp = (-x).cwiseMax(static_cast<T>(0));  // temp = max(-x, 0)
    y.device(d) = -temp - (((-temp).exp() + (-x - temp).exp()).log());
  }
};

// Originally: f' = exp(-x) / (1 + exp(-x))
// For numerical stability: f' = exp(-x - max(-x, 0)) / (exp(-max(-x, 0)) +
// exp(-x - max(-x, 0)))
template <typename T>
struct LogSigmoidGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
    auto temp = (-x).cwiseMax(static_cast<T>(0));  // temp = max(-x, 0)
    dx.device(d) =
        dy * ((-x - temp).exp() / ((-temp).exp() + (-x - temp).exp()));
  }
};

Q
qijun 已提交
133
// exp(x) = e^x
134 135
template <typename T>
struct ExpFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
136
  template <typename Device, typename X, typename Y>
137
  void operator()(Device d, X x, Y y) const {
Q
qijun 已提交
138 139 140 141
    y.device(d) = x.exp();
  }
};

142 143
template <typename T>
struct ExpGradFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
144
  template <typename Device, typename X, typename Y, typename dY, typename dX>
145
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
Q
qijun 已提交
146
    dx.device(d) = dy * y;
Q
qijun 已提交
147 148 149
  }
};

Q
qijun 已提交
150
// relu(x) = max(x, 0)
Q
qijun 已提交
151
template <typename T>
152
struct ReluFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
153
  template <typename Device, typename X, typename Y>
154
  void operator()(Device d, X x, Y y) const {
Q
qijun 已提交
155 156 157
    y.device(d) = x.cwiseMax(static_cast<T>(0));
  }
};
Q
qijun 已提交
158

Q
qijun 已提交
159
template <typename T>
160
struct ReluGradFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
161
  template <typename Device, typename X, typename Y, typename dY, typename dX>
162
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
Q
qijun 已提交
163 164 165
    dx.device(d) = dy * (x > static_cast<T>(0)).template cast<T>();
  }
};
Q
qijun 已提交
166

167
// tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
168 169
template <typename T>
struct TanhFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
170
  template <typename Device, typename X, typename Y>
171
  void operator()(Device d, X x, Y y) const {
Q
qijun 已提交
172 173 174 175 176
    y.device(d) = x.tanh();
  }
};

template <typename T>
177
struct TanhGradFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
178
  template <typename Device, typename X, typename Y, typename dY, typename dX>
179
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
180
    dx.device(d) = dy * (static_cast<T>(1) - y * y);
Q
qijun 已提交
181 182 183
  }
};

K
Kavya Srinet 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
// tanhshrink(x) = x - tanh(x)
// where tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
template <typename T>
struct TanhShrinkFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) const {
    y.device(d) = x - x.tanh();
  }
};

template <typename T>
struct TanhShrinkGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
    dx.device(d) = dy * (x.tanh() * x.tanh());
  }
};

202 203 204 205 206 207 208 209 210 211 212
// tanhshrink(x) = x - tanh(x)
// where tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
template <typename T>
struct HardShrinkFunctor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) const {
Y
Yu Yang 已提交
213 214
    auto temp1 = (x < static_cast<T>(threshold * -1)).template cast<T>().eval();
    auto temp2 = (x > static_cast<T>(threshold)).template cast<T>().eval();
215 216 217 218 219 220 221 222 223 224 225 226 227 228
    y.device(d) = x * (temp1 + temp2);
  }
};

template <typename T>
struct HardShrinkGradFunctor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
Y
Yu Yang 已提交
229 230
    auto temp1 = (x < static_cast<T>(threshold * -1)).template cast<T>().eval();
    auto temp2 = (x > static_cast<T>(threshold)).template cast<T>().eval();
231 232 233 234
    dx.device(d) = dy * (temp1 + temp2).template cast<T>();
  }
};

K
Kexin Zhao 已提交
235
// softshrink(x) = x - lambda, if x > lambda; x + lambda, if x < -lambda; 0
236 237 238 239 240 241 242 243 244 245
// otherwise
template <typename T>
struct SoftShrinkFunctor : public BaseActivationFunctor<T> {
  float lambda;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"lambda", &lambda}};
  }

  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) const {
Y
Yu Yang 已提交
246 247 248 249
    auto lambdaT = static_cast<T>(lambda);
    auto temp1 = (x > lambdaT).template cast<T>().eval();
    auto temp2 = (x < -lambdaT).template cast<T>().eval();
    y.device(d) = temp1 * (x - lambdaT) + temp2 * (x + lambdaT);
250 251 252 253 254 255 256 257 258 259 260
  }
};

template <typename T>
struct SoftShrinkGradFunctor : public BaseActivationFunctor<T> {
  float lambda;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"lambda", &lambda}};
  }
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
Y
Yu Yang 已提交
261 262 263
    auto lambdaT = static_cast<T>(lambda);
    auto temp1 = (x > lambdaT).template cast<T>().eval();
    auto temp2 = (x < -lambdaT).template cast<T>().eval();
264 265 266 267
    dx.device(d) = dy * (temp1 + temp2).template cast<T>();
  }
};

Q
qijun 已提交
268
// sqrt(x) = x^(1/2)
269 270
template <typename T>
struct SqrtFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
271
  template <typename Device, typename X, typename Y>
272
  void operator()(Device d, X x, Y y) const {
Q
qijun 已提交
273 274 275 276 277
    y.device(d) = x.sqrt();
  }
};

template <typename T>
278
struct SqrtGradFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
279
  template <typename Device, typename X, typename Y, typename dY, typename dX>
280
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
281
    const Y y_conj = Eigen::numext::conj(y);
Q
qijun 已提交
282 283 284 285
    dx.device(d) = static_cast<T>(0.5) * dy / y_conj;
  }
};

D
dzhwinter 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
// ceil(x) = ceiling(x)
template <typename T>
struct CeilFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) const {
    y.device(d) = x.ceil();
  }
};

template <typename T>
struct ZeroGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
    dx.device(d) = static_cast<T>(0) / x;
  }
};

// floor(x) = flooring(x)
template <typename T>
struct FloorFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) const {
    y.device(d) = x.ceil();
  }
};

// round(x) = [x]
template <typename T>
struct RoundFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) const {
    y.device(d) = x.round();
  }
};

Q
qijun 已提交
321
// abs(x) = |x|
322 323
template <typename T>
struct AbsFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
324
  template <typename Device, typename X, typename Y>
325
  void operator()(Device d, X x, Y y) const {
Q
qijun 已提交
326 327 328 329
    y.device(d) = x.abs();
  }
};

330 331
template <typename T>
struct AbsGradFunctor : public BaseActivationFunctor<T> {
332
  template <typename Device, typename X, typename Y, typename dY, typename dX>
333
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
334 335 336 337
    dx.device(d) = dy * x.sign();
  }
};

Q
qijun 已提交
338 339
// reciprocal(x) = 1 / x
template <typename T>
340
struct ReciprocalFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
341
  template <typename Device, typename X, typename Y>
342
  void operator()(Device d, X x, Y y) const {
343
    y.device(d) = static_cast<T>(1) / x;
Q
qijun 已提交
344 345 346
  }
};

347
template <typename T>
348
struct ReciprocalGradFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
349
  template <typename Device, typename X, typename Y, typename dY, typename dX>
350
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
351
    dx.device(d) = dy * static_cast<T>(-1) * y * y;
Q
qijun 已提交
352 353 354 355
  }
};

// log(x) = natural logarithm of x
356 357
template <typename T>
struct LogFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
358
  template <typename Device, typename X, typename Y>
359
  void operator()(Device d, X x, Y y) const {
Q
qijun 已提交
360 361 362 363
    y.device(d) = x.log();
  }
};

364
template <typename T>
365
struct LogGradFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
366
  template <typename Device, typename X, typename Y, typename dY, typename dX>
367
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
368
    dx.device(d) = dy * (static_cast<T>(1) / x);
Q
qijun 已提交
369 370 371 372
  }
};

// square(x) = x^2
373 374
template <typename T>
struct SquareFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
375
  template <typename Device, typename X, typename Y>
376
  void operator()(Device d, X x, Y y) const {
Q
qijun 已提交
377 378
    y.device(d) = x.square();
  }
379
};
Q
qijun 已提交
380

381
template <typename T>
382
struct SquareGradFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
383
  template <typename Device, typename X, typename Y, typename dY, typename dX>
384
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
385 386 387 388
    dx.device(d) = dy * static_cast<T>(2) * x;
  }
};

389 390 391 392 393 394 395 396 397 398
template <typename T>
struct BReluFunctor : public BaseActivationFunctor<T> {
  float t_min;
  float t_max;

  // NOTE: Explicit hides the `BaseActivationFunctor<T>::GetAttrs`
  // not polymorphism for speed.
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"t_min", &t_min}, {"t_max", &t_max}};
  }
399

400 401
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) const {
Y
Yu Yang 已提交
402 403
    y.device(d) =
        x.cwiseMax(static_cast<T>(t_min)).cwiseMin(static_cast<T>(t_max));
404 405 406
  }
};

407 408 409 410 411 412 413 414 415
template <typename T>
struct BReluGradFunctor : public BaseActivationFunctor<T> {
  float t_min;
  float t_max;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"t_min", &t_min}, {"t_max", &t_max}};
  }
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
Y
Yu Yang 已提交
416 417 418
    dx.device(d) = dy *
                   ((x > static_cast<T>(t_min)) * (x < static_cast<T>(t_max)))
                       .template cast<T>();
419 420 421
  }
};

422 423 424 425 426 427 428 429 430 431 432
// relu6(x) = min(max(0, x), 6)
template <typename T>
struct Relu6Functor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) const {
Y
Yu Yang 已提交
433 434
    y.device(d) =
        x.cwiseMax(static_cast<T>(0)).cwiseMin(static_cast<T>(threshold));
435 436 437 438 439 440 441 442 443 444 445
  }
};

template <typename T>
struct Relu6GradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
Y
Yu Yang 已提交
446 447 448
    dx.device(d) = dy *
                   ((x > static_cast<T>(0)) * (x < static_cast<T>(threshold)))
                       .template cast<T>();
449 450 451
  }
};

K
kexinzhao 已提交
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
// softplus(x) = log(1 + exp(x))
// When x is a very large positive number, exp(x) may explode to inf,
// Using trick below for numerical stability
// https://hips.seas.harvard.edu/blog/2013/01/09/computing-log-sum-exp/
// Then: softplus(x) = max(x, 0) + log(exp(-max(x, 0)) + exp(x - max(x, 0)))
template <typename T>
struct SoftplusFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) {
    auto temp = x.cwiseMax(static_cast<T>(0));  // temp = max(x, 0)
    y.device(d) = temp + (((-temp).exp() + (x - temp).exp()).log());
  }
};

// d(softplus(x))/dx = exp(x) / (1 + exp(x))
// For numerical stability:
// d(softplus(x))/dx = exp(x - max(x, 0)) / (exp(-max(x, 0)) +
// exp(x - max(x, 0)))
template <typename T>
struct SoftplusGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) {
    auto temp = x.cwiseMax(static_cast<T>(0));  // temp = max(x, 0)
    dx.device(d) = dy * ((x - temp).exp() / ((-temp).exp() + (x - temp).exp()));
  }
};

479 480
// softsign(x) = x / (1 + |x|)
template <typename T>
481
struct SoftsignFunctor : public BaseActivationFunctor<T> {
482 483 484 485 486 487 488 489 490
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) {
    y.device(d) = x / (static_cast<T>(1) + x.abs());
  }
};

// d(softsign(x))/dx = 1 / (1 + |x|)^2
// Taken from https://en.wikipedia.org/wiki/Activation_function
template <typename T>
491
struct SoftsignGradFunctor : public BaseActivationFunctor<T> {
492 493 494 495 496 497 498
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) {
    dx.device(d) =
        dy * (static_cast<T>(1) / (static_cast<T>(1) + x.abs()).square());
  }
};

499 500 501 502 503 504
template <typename T>
struct SoftReluFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
505

506 507
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) const {
Y
Yu Yang 已提交
508 509
    auto tmp = static_cast<T>(threshold);
    auto temp = x.cwiseMax(-tmp).cwiseMin(tmp);
510
    y.device(d) = (static_cast<T>(1) + temp.exp()).log();
511 512 513
  }
};

514 515 516 517 518 519 520 521
template <typename T>
struct SoftReluGradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
Y
Yu Yang 已提交
522 523
    auto tmp = static_cast<T>(threshold);
    auto temp = ((x > -tmp) * (x < tmp)).template cast<T>().eval();
524
    dx.device(d) = dy * (static_cast<T>(1) - (-y).exp()) * temp;
525 526 527
  }
};

K
Kavya Srinet 已提交
528 529 530 531 532 533
template <typename T>
struct LeakyReluFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
534

K
Kavya Srinet 已提交
535 536
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) const {
Y
Yu Yang 已提交
537
    y.device(d) = x.cwiseMax(static_cast<T>(alpha) * x);
538 539 540
  }
};

K
Kavya Srinet 已提交
541 542 543 544 545 546 547 548
template <typename T>
struct LeakyReluGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
Y
Yu Yang 已提交
549 550
    auto temp1 = static_cast<T>(alpha) *
                 (x < static_cast<T>(0)).template cast<T>().eval();
K
Kavya Srinet 已提交
551 552
    auto temp2 = (x >= static_cast<T>(0)).template cast<T>().eval();
    dx.device(d) = dy * (temp1 + temp2).template cast<T>();
553 554 555
  }
};

556 557 558 559 560 561
template <typename T>
struct ELUFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
562

563 564
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) const {
Y
Yu Yang 已提交
565 566 567
    y.device(d) = x.cwiseMax(static_cast<T>(0)) +
                  (static_cast<T>(alpha) * (x.exp() - static_cast<T>(1)))
                      .cwiseMin(static_cast<T>(0));
568 569 570
  }
};

571 572 573 574 575 576 577 578
template <typename T>
struct ELUGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
Y
Yu Yang 已提交
579 580 581
    dx.device(d) = dy * (x > static_cast<T>(0)).template cast<T>() +
                   dy * (y + static_cast<T>(alpha)) *
                       (x < static_cast<T>(0)).template cast<T>();
582 583 584
  }
};

Q
QI JUN 已提交
585
// FIXME(qijun) https://github.com/PaddlePaddle/Paddle/issues/5198
586 587 588 589 590 591 592 593
template <typename T>
struct PowFunctor : public BaseActivationFunctor<T> {
  float factor;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"factor", &factor}};
  }
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) const {
Y
Yu Yang 已提交
594
    y.device(d) = x.pow(static_cast<T>(factor));
595 596 597
  }
};

598 599 600 601 602 603 604 605
template <typename T>
struct PowGradFunctor : public BaseActivationFunctor<T> {
  float factor;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"factor", &factor}};
  }
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
Y
Yu Yang 已提交
606 607
    dx.device(d) = dy * static_cast<T>(factor) *
                   x.pow(static_cast<T>(factor - static_cast<T>(1)));
608 609 610
  }
};

611 612 613 614 615 616 617
template <typename T>
struct STanhFunctor : public BaseActivationFunctor<T> {
  float scale_a;
  float scale_b;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"scale_a", &scale_a}, {"scale_b", &scale_b}};
  }
618

619 620
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) const {
Y
Yu Yang 已提交
621 622
    y.device(d) =
        static_cast<T>(scale_b) * (static_cast<T>(scale_a) * x).tanh();
623 624 625
  }
};

626 627 628 629 630 631 632
template <typename T>
struct STanhGradFunctor : public BaseActivationFunctor<T> {
  float scale_a;
  float scale_b;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"scale_a", &scale_a}, {"scale_b", &scale_b}};
  }
633

634 635
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
Y
Yu Yang 已提交
636 637 638 639
    auto a = static_cast<T>(scale_a);
    auto b = static_cast<T>(scale_b);
    auto temp = (a * x).tanh() * (a * x).tanh();
    dx.device(d) = dy * a * b * (static_cast<T>(1) - temp);
Q
qijun 已提交
640 641 642
  }
};

643 644 645 646 647 648 649 650 651
template <typename T>
struct ThresholdedReluFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) const {
Y
Yu Yang 已提交
652 653
    auto th = static_cast<T>(threshold);
    y.device(d) = (x > th).template cast<T>() * x;
654 655 656 657 658 659 660 661 662 663 664 665
  }
};

template <typename T>
struct ThresholdedReluGradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
Y
Yu Yang 已提交
666 667
    auto th = static_cast<T>(threshold);
    dx.device(d) = dy * (x > th).template cast<T>();
668 669 670
  }
};

671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
template <typename T>
struct HardSigmoidFunctor : public BaseActivationFunctor<T> {
  float slope;
  float offset;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"slope", &slope}, {"offset", &offset}};
  }

  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) const {
    auto temp = x * static_cast<T>(slope) + static_cast<T>(offset);
    y.device(d) = temp.cwiseMax(static_cast<T>(0)).cwiseMin(static_cast<T>(1));
  }
};

template <typename T>
struct HardSigmoidGradFunctor : public BaseActivationFunctor<T> {
  float slope;
  float offset;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"slope", &slope}, {"offset", &offset}};
  }

  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
    dx.device(d) =
        dy *
        ((y > static_cast<T>(0)) * (y < static_cast<T>(1))).template cast<T>() *
        static_cast<T>(slope);
  }
};

A
Abhinav Arora 已提交
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
template <typename T>
struct SwishFunctor : public BaseActivationFunctor<T> {
  float beta;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}};
  }

  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) const {
    y.device(d) = x / (static_cast<T>(1) + (static_cast<T>(-beta) * x).exp());
  }
};

template <typename T>
struct SwishGradFunctor : public BaseActivationFunctor<T> {
  float beta;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}};
  }

  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
    auto temp1 = static_cast<T>(1) /
                 (static_cast<T>(1) + (static_cast<T>(-beta) * x).exp());
    auto temp2 = temp1 * (static_cast<T>(1) - (beta * y));
    dx.device(d) = dy * ((beta * y) + temp2);
  }
};

Q
qijun 已提交
732 733
}  // namespace operators
}  // namespace paddle
734

735 736 737 738 739 740 741 742 743
#define FOR_EACH_KERNEL_FUNCTOR(__macro)                             \
  __macro(sigmoid, SigmoidFunctor, SigmoidGradFunctor);              \
  __macro(logsigmoid, LogSigmoidFunctor, LogSigmoidGradFunctor);     \
  __macro(exp, ExpFunctor, ExpGradFunctor);                          \
  __macro(relu, ReluFunctor, ReluGradFunctor);                       \
  __macro(tanh, TanhFunctor, TanhGradFunctor);                       \
  __macro(softshrink, SoftShrinkFunctor, SoftShrinkGradFunctor);     \
  __macro(sqrt, SqrtFunctor, SqrtGradFunctor);                       \
  __macro(abs, AbsFunctor, AbsGradFunctor);                          \
D
dzhwinter 已提交
744 745 746
  __macro(ceil, CeilFunctor, ZeroGradFunctor);                       \
  __macro(floor, FloorFunctor, ZeroGradFunctor);                     \
  __macro(round, RoundFunctor, ZeroGradFunctor);                     \
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
  __macro(reciprocal, ReciprocalFunctor, ReciprocalGradFunctor);     \
  __macro(log, LogFunctor, LogGradFunctor);                          \
  __macro(square, SquareFunctor, SquareGradFunctor);                 \
  __macro(brelu, BReluFunctor, BReluGradFunctor);                    \
  __macro(soft_relu, SoftReluFunctor, SoftReluGradFunctor);          \
  __macro(pow, PowFunctor, PowGradFunctor);                          \
  __macro(stanh, STanhFunctor, STanhGradFunctor);                    \
  __macro(softplus, SoftplusFunctor, SoftplusGradFunctor);           \
  __macro(softsign, SoftsignFunctor, SoftsignGradFunctor);           \
  __macro(relu6, Relu6Functor, Relu6GradFunctor);                    \
  __macro(leaky_relu, LeakyReluFunctor, LeakyReluGradFunctor);       \
  __macro(tanh_shrink, TanhShrinkFunctor, TanhShrinkGradFunctor);    \
  __macro(elu, ELUFunctor, ELUGradFunctor);                          \
  __macro(hard_shrink, HardShrinkFunctor, HardShrinkGradFunctor);    \
  __macro(hard_sigmoid, HardSigmoidFunctor, HardSigmoidGradFunctor); \
A
Abhinav Arora 已提交
762
  __macro(swish, SwishFunctor, SwishGradFunctor);                    \
763
  __macro(thresholded_relu, ThresholdedReluFunctor, ThresholdedReluGradFunctor);