test_engine.cc 4.8 KB
Newer Older
石晓伟 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gtest/gtest.h>

#include "paddle/fluid/inference/lite/engine.h"
#include "paddle/fluid/inference/utils/singleton.h"
#include "paddle/fluid/operators/lite/ut_helper.h"

#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"

namespace paddle {
namespace inference {
namespace lite {

using inference::lite::AddTensorToBlockDesc;
using inference::lite::CreateTensor;
using inference::lite::serialize_params;

void make_fake_model(std::string* model, std::string* param) {
  framework::ProgramDesc program;
  LOG(INFO) << "program.block size is " << program.Size();
  auto* block_ = program.Proto()->mutable_blocks(0);
  LOG(INFO) << "create block desc";
  framework::BlockDesc block_desc(&program, block_);
  auto* feed0 = block_desc.AppendOp();
  feed0->SetType("feed");
  feed0->SetInput("X", {"feed"});
  feed0->SetOutput("Out", {"x"});
  feed0->SetAttr("col", 0);
  auto* feed1 = block_desc.AppendOp();
  feed1->SetType("feed");
  feed1->SetInput("X", {"feed"});
  feed1->SetOutput("Out", {"y"});
  feed1->SetAttr("col", 1);
  LOG(INFO) << "create elementwise_add op";
  auto* elt_add = block_desc.AppendOp();
  elt_add->SetType("elementwise_add");
  elt_add->SetInput("X", std::vector<std::string>({"x"}));
  elt_add->SetInput("Y", std::vector<std::string>({"y"}));
  elt_add->SetOutput("Out", std::vector<std::string>({"z"}));
  elt_add->SetAttr("axis", -1);
  LOG(INFO) << "create fetch op";
  auto* fetch = block_desc.AppendOp();
  fetch->SetType("fetch");
  fetch->SetInput("X", std::vector<std::string>({"z"}));
  fetch->SetOutput("Out", std::vector<std::string>({"out"}));
  fetch->SetAttr("col", 0);
  // Set inputs' variable shape in BlockDesc
  AddTensorToBlockDesc(block_, "x", std::vector<int64_t>({2, 4}), true);
  AddTensorToBlockDesc(block_, "y", std::vector<int64_t>({2, 4}), true);
  AddTensorToBlockDesc(block_, "z", std::vector<int64_t>({2, 4}), false);
  AddTensorToBlockDesc(block_, "out", std::vector<int64_t>({2, 4}), false);

  *block_->add_ops() = *feed0->Proto();
  *block_->add_ops() = *feed1->Proto();
  *block_->add_ops() = *elt_add->Proto();
  *block_->add_ops() = *fetch->Proto();

  framework::Scope scope;
#ifdef PADDLE_WITH_CUDA
  platform::CUDAPlace place;
  platform::CUDADeviceContext ctx(place);
#else
  platform::CPUPlace place;
  platform::CPUDeviceContext ctx(place);
#endif
  // Prepare variables.
  std::vector<std::string> repetitive_params{"x", "y"};
  CreateTensor(&scope, "x", std::vector<int64_t>({2, 4}));
  CreateTensor(&scope, "y", std::vector<int64_t>({2, 4}));
  ASSERT_EQ(block_->ops_size(), 4);
  *model = program.Proto()->SerializeAsString();
  serialize_params(param, &scope, repetitive_params);
}

TEST(EngineManager, engine) {
  ASSERT_EQ(
      inference::Singleton<inference::lite::EngineManager>::Global().Empty(),
      true);

  inference::lite::EngineConfig config;
  make_fake_model(&(config.model), &(config.param));
  LOG(INFO) << "prepare config";

  const std::string unique_key("engine_0");
  config.model_from_memory = true;
  config.valid_places = {
#ifdef PADDLE_WITH_CUDA
      paddle::lite::Place({TARGET(kCUDA), PRECISION(kFloat)}),
#endif
      paddle::lite::Place({TARGET(kX86), PRECISION(kFloat)}),
      paddle::lite::Place({TARGET(kHost), PRECISION(kAny)}),
  };

  LOG(INFO) << "Create EngineManager";
  inference::Singleton<inference::lite::EngineManager>::Global().Create(
      unique_key, config);
  LOG(INFO) << "Create EngineManager done";
  ASSERT_EQ(
      inference::Singleton<inference::lite::EngineManager>::Global().Empty(),
      false);
  ASSERT_EQ(inference::Singleton<inference::lite::EngineManager>::Global().Has(
                unique_key),
            true);
  paddle::lite::Predictor* engine_0 =
      inference::Singleton<inference::lite::EngineManager>::Global().Get(
          unique_key);
  CHECK_NOTNULL(engine_0);
  inference::Singleton<inference::lite::EngineManager>::Global().DeleteAll();
  CHECK(inference::Singleton<inference::lite::EngineManager>::Global().Get(
            unique_key) == nullptr)
      << "the engine_0 should be nullptr";
}

}  // namespace lite
}  // namespace inference
}  // namespace paddle