graph_pattern_detector.cc 70.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <algorithm>
Q
Qiao Longfei 已提交
16
#include <array>
17
#include <memory>
18
#include <string>
19 20
#include <unordered_map>
#include <unordered_set>
21 22 23
#include <vector>

#include "paddle/fluid/framework/ir/graph_helper.h"
24
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
25
#include "paddle/fluid/framework/ir/graph_traits.h"
26
#include "paddle/fluid/framework/ir/graph_viz_pass.h"
C
chengduo 已提交
27
#include "paddle/fluid/framework/operator.h"
28
#include "paddle/fluid/platform/enforce.h"
Y
Yan Chunwei 已提交
29
#include "paddle/fluid/string/pretty_log.h"
Y
Yan Chunwei 已提交
30
#include "paddle/fluid/string/printf.h"
31

32 33 34 35
namespace paddle {
namespace framework {
namespace ir {

Y
Yan Chunwei 已提交
36 37 38 39
using string::PrettyLogEndl;
using string::PrettyLog;
using string::Style;

40 41
size_t PDPattern::id_ = 0UL;

C
chengduo 已提交
42
PDNode *PDPattern::NewNode(const std::string &name) {
Y
Yan Chunwei 已提交
43
  if (!name.empty()) {
T
tensor-tang 已提交
44
    PADDLE_ENFORCE_EQ(node_map_.count(name), 0UL,
Y
Yan Chunwei 已提交
45 46 47 48 49
                      "PDNode's name should be unique, get duplicate [%s]",
                      name);
  }

  nodes_.emplace_back(new PDNode(this, name));
C
chengduo 已提交
50
  auto *cur = nodes_.back().get();
Y
Yan Chunwei 已提交
51 52 53 54
  node_map_[name] = cur;
  return cur;
}

C
chengduo 已提交
55
PDNode *PDPattern::NewNode(PDNode::teller_t &&teller, const std::string &name) {
56
  if (!name.empty()) {
T
tensor-tang 已提交
57
    PADDLE_ENFORCE_EQ(node_map_.count(name), 0UL,
58 59 60 61
                      "PDNode's name should be unique, get duplicate [%s]",
                      name);
  }

62
  nodes_.emplace_back(new PDNode(std::move(teller), this, name));
C
chengduo 已提交
63
  auto *cur = nodes_.back().get();
64
  node_map_[name] = cur;
65 66 67
  return cur;
}

C
chengduo 已提交
68
PDNode *PDPattern::RetrieveNode(const std::string &id) const {
69 70 71 72 73 74 75 76
  auto it = node_map_.find(id);
  if (it == node_map_.end()) {
    return nullptr;
  }

  return it->second;
}

C
chengduo 已提交
77
void PDPattern::AddEdge(PDNode *a, PDNode *b) {
78 79 80 81 82 83
  PADDLE_ENFORCE(a);
  PADDLE_ENFORCE(b);
  PADDLE_ENFORCE(a != b, "can't connect to the same nodes.");
  edges_.emplace_back(a, b);
}

C
chengduo 已提交
84
void GraphPatternDetector::operator()(Graph *graph,
85
                                      GraphPatternDetector::handle_t handler) {
86 87 88 89
  if (!MarkPDNodesInGraph(*graph)) {
    return;
  }

90 91 92
  auto subgraphs = DetectPatterns();
  UniquePatterns(&subgraphs);
  RemoveOverlappedMatch(&subgraphs);
Y
Yan Chunwei 已提交
93
  ValidateByNodeRole(&subgraphs);
94

Y
Yan Chunwei 已提交
95
  if (subgraphs.empty()) return;
96
  LOG(INFO) << "---  detected " << subgraphs.size() << " subgraphs";
97
  int id = 0;
C
chengduo 已提交
98
  for (auto &g : subgraphs) {
M
minqiyang 已提交
99
    VLOG(3) << "optimizing #" << id++ << " subgraph";
100 101 102 103
    handler(g, graph);
  }
}

C
chengduo 已提交
104
bool GraphPatternDetector::MarkPDNodesInGraph(const ir::Graph &graph) {
M
minqiyang 已提交
105
  VLOG(3) << "mark pdnodes in graph";
106 107
  if (graph.Nodes().empty()) return false;

C
chengduo 已提交
108 109
  for (auto &node : GraphTraits::DFS(graph)) {
    for (const auto &pdnode : pattern_.nodes()) {
110
      if (pdnode->Tell(&node)) {
111
        VLOG(4) << "Node " << node.Name() << " marked as " << pdnode->name();
112 113 114 115
        pdnodes2nodes_[pdnode.get()].insert(&node);
      }
    }
  }
Y
Yan Chunwei 已提交
116
  // Check to early stop if some PDNode can't find matched Node.
C
chengduo 已提交
117
  for (auto &pdnode : pattern_.nodes()) {
Y
Yan Chunwei 已提交
118
    if (!pdnodes2nodes_.count(pdnode.get())) {
M
minqiyang 已提交
119
      VLOG(4) << pdnode->name() << " can't find matched Node, early stop";
Y
Yan Chunwei 已提交
120
      // return false;
Y
Yan Chunwei 已提交
121 122
    }
  }
M
minqiyang 已提交
123
  VLOG(3) << pdnodes2nodes_.size() << " nodes marked";
124

125 126 127
  return !pdnodes2nodes_.empty();
}

Y
Yan Chunwei 已提交
128 129 130
// The intermediate Nodes can only link to the nodes inside the pattern, or this
// subgraph will be droped.
void GraphPatternDetector::ValidateByNodeRole(
C
chengduo 已提交
131
    std::vector<GraphPatternDetector::subgraph_t> *subgraphs) {
Y
Yan Chunwei 已提交
132 133 134 135 136
  std::vector<GraphPatternDetector::subgraph_t> result;

  subgraphs->erase(
      std::remove_if(
          subgraphs->begin(), subgraphs->end(),
C
chengduo 已提交
137
          [](const GraphPatternDetector::subgraph_t &subgraph) -> bool {
Y
Yan Chunwei 已提交
138
            // Collect the inputs and outputs.
C
chengduo 已提交
139 140
            std::unordered_set<Node *> ios;
            for (auto &item : subgraph) {
Y
Yan Chunwei 已提交
141 142 143 144
              if (!item.first->IsIntermediate()) {
                ios.insert(item.second);
              }
            }
C
chengduo 已提交
145
            for (auto &item : subgraph) {
Y
Yan Chunwei 已提交
146
              if (item.first->IsIntermediate()) {
C
chengduo 已提交
147
                for (auto *x : item.second->inputs) {
Y
Yan Chunwei 已提交
148 149 150 151
                  if (!ios.count(x)) {
                    return true;
                  }
                }
C
chengduo 已提交
152
                for (auto *x : item.second->outputs) {
Y
Yan Chunwei 已提交
153 154 155 156 157 158 159 160 161 162 163
                  if (!ios.count(x)) {
                    return true;
                  }
                }
              }
            }
            return false;
          }),
      subgraphs->end());
}

164
struct HitGroup {
C
chengduo 已提交
165
  std::unordered_map<PDNode *, Node *> roles;
166

C
chengduo 已提交
167
  bool Match(Node *node, PDNode *pat) {
168
    if (nodes_.count(node)) {
T
Tao Luo 已提交
169 170 171 172 173
      if (roles.count(pat) && roles[pat] == node) return true;
      return false;
    } else {
      if (roles.count(pat) && roles[pat] != node) return false;
      return true;
174
    }
175 176
  }

C
chengduo 已提交
177
  void Register(Node *node, PDNode *pat) {
178 179 180 181 182
    roles[pat] = node;
    nodes_.insert(node);
  }

 private:
C
chengduo 已提交
183
  std::unordered_set<Node *> nodes_;
184 185 186
};

// Tell whether Node a links to b.
C
chengduo 已提交
187 188
bool IsNodesLink(Node *a, Node *b) {
  for (auto *node : a->outputs) {
189 190 191 192 193 194 195
    if (b == node) {
      return true;
    }
  }
  return false;
}

196 197
std::vector<GraphPatternDetector::subgraph_t>
GraphPatternDetector::DetectPatterns() {
198
  // Init empty subgraphs.
199
  std::vector<GraphPatternDetector::subgraph_t> result;
200
  std::vector<HitGroup> init_groups;
201
  std::array<std::vector<HitGroup>, 2> bi_records;
C
chengduo 已提交
202
  auto *first_pnode = pattern_.edges().empty() ? pattern().nodes().front().get()
203
                                               : pattern_.edges().front().first;
204
  if (!pdnodes2nodes_.count(first_pnode)) return result;
C
chengduo 已提交
205
  for (auto *node : pdnodes2nodes_[first_pnode]) {
206 207 208 209 210 211 212 213 214 215
    HitGroup group;
    group.roles[first_pnode] = node;
    init_groups.emplace_back(group);
  }

  int step = 0;
  bi_records[0] = std::move(init_groups);

  // Extend a PDNode to subgraphs by deducing the connection relations defined
  // in edges of PDNodes.
C
chengduo 已提交
216
  for (const auto &edge : pattern_.edges()) {
M
minqiyang 已提交
217
    VLOG(4) << "check " << edge.first->name() << " -> " << edge.second->name();
Y
Yan Chunwei 已提交
218
    // TODO(Superjomn) Fix bug here, the groups might be duplicate here.
219 220
    // Each role has two PDNodes, which indicates two roles.
    // Detect two Nodes that can match these two roles and they are connected.
C
chengduo 已提交
221 222
    auto &pre_groups = bi_records[step % 2];
    auto &cur_groups = bi_records[1 - (step++ % 2)];
223
    cur_groups.clear();
224
    if (pre_groups.empty()) break;
225
    // source -> target
C
chengduo 已提交
226 227
    for (Node *source : pdnodes2nodes_[edge.first]) {
      for (Node *target : pdnodes2nodes_[edge.second]) {
M
minqiyang 已提交
228
        VLOG(8) << "check " << source->id() << " -- " << target->id();
229
        // TODO(Superjomn) add some prune strategies.
C
chengduo 已提交
230
        for (const auto &group : pre_groups) {
T
Tao Luo 已提交
231 232 233 234 235 236
          if (IsNodesLink(source, target)) {
            HitGroup new_group = group;
            bool flag = new_group.Match(source, edge.first) &&
                        new_group.Match(target, edge.second);
            if (flag) {
              new_group.Register(source, edge.first);
237 238 239 240 241 242 243 244
              new_group.Register(target, edge.second);
              cur_groups.push_back(new_group);
              // TODO(Superjomn) need to unique
            }
          }
        }
      }
    }
M
minqiyang 已提交
245
    VLOG(3) << "step " << step << " get records: " << cur_groups.size();
C
chengduo 已提交
246 247
    for (auto &group : cur_groups) {
      for (auto &item : group.roles) {
M
minqiyang 已提交
248
        VLOG(4) << "node " << item.second->id() << " as " << item.first->name();
Y
Yan Chunwei 已提交
249
      }
M
minqiyang 已提交
250
      VLOG(4) << "=========================================================";
Y
Yan Chunwei 已提交
251
    }
252 253
  }

C
chengduo 已提交
254
  for (auto &group : bi_records[step % 2]) {
255
    GraphPatternDetector::subgraph_t subgraph;
C
chengduo 已提交
256
    for (auto &role : group.roles) {
257 258 259 260 261 262 263
      subgraph.emplace(role.first, role.second);
    }
    result.emplace_back(subgraph);
  }
  return result;
}

Y
Yan Chunwei 已提交
264 265
struct GraphItemLessThan {
  bool operator()(const std::pair<PDNode *, Node *> &a,
Y
Yan Chunwei 已提交
266
                  const std::pair<PDNode *, Node *> &b) {
Y
Yan Chunwei 已提交
267 268 269 270 271
    if (a.first != b.first) {
      return a.first < b.first;
    } else {
      return a.second < b.second;
    }
Y
Yan Chunwei 已提交
272
  }
Y
Yan Chunwei 已提交
273
};
Y
Yan Chunwei 已提交
274

275 276
// TODO(Superjomn) enhance the function as it marks unique unique as duplicates
// see https://github.com/PaddlePaddle/Paddle/issues/13550
277
void GraphPatternDetector::UniquePatterns(
C
chengduo 已提交
278
    std::vector<GraphPatternDetector::subgraph_t> *subgraphs) {
279
  if (subgraphs->empty()) return;
280
  std::vector<GraphPatternDetector::subgraph_t> result;
281 282

  std::unordered_set<size_t> set;
Y
Yan Chunwei 已提交
283
  std::hash<std::string> hasher;
C
chengduo 已提交
284
  for (auto &g : *subgraphs) {
Y
Yan Chunwei 已提交
285 286
    // Sort the items in the sub-graph, and transform to a string key.
    std::vector<std::pair<PDNode *, Node *>> sorted_keys(g.begin(), g.end());
Y
Yan Chunwei 已提交
287
    std::sort(sorted_keys.begin(), sorted_keys.end(), GraphItemLessThan());
Y
Yan Chunwei 已提交
288 289 290
    std::stringstream ss;
    for (auto &item : sorted_keys) {
      ss << item.first << ":" << item.second;
291
    }
Y
Yan Chunwei 已提交
292
    auto key = hasher(ss.str());
293 294 295 296 297 298 299 300
    if (!set.count(key)) {
      result.emplace_back(g);
      set.insert(key);
    }
  }
  *subgraphs = result;
}

301
void GraphPatternDetector::RemoveOverlappedMatch(
C
chengduo 已提交
302
    std::vector<subgraph_t> *subgraphs) {
303
  std::vector<subgraph_t> result;
C
chengduo 已提交
304
  std::unordered_set<Node *> node_set;
305

C
chengduo 已提交
306
  for (const auto &subgraph : *subgraphs) {
307
    bool valid = true;
C
chengduo 已提交
308
    for (auto &item : subgraph) {
Y
Yan Chunwei 已提交
309
      if (item.first->IsIntermediate() && node_set.count(item.second)) {
310 311 312 313 314
        valid = false;
        break;
      }
    }
    if (valid) {
C
chengduo 已提交
315
      for (auto &item : subgraph) {
316 317 318 319 320 321 322 323
        node_set.insert(item.second);
      }
      result.push_back(subgraph);
    }
  }
  *subgraphs = result;
}

324 325 326 327 328
std::string PDPattern::DotString() const {
  using inference::analysis::Dot;
  Dot dot;
  int id = 0;
  // Create Nodes
C
chengduo 已提交
329 330
  std::unordered_map<PDNode *, std::string> node2dot;
  for (const auto &node : nodes()) {
331 332 333 334 335
    std::string node_id = "Node" + std::to_string(id++);
    dot.AddNode(node_id, {}, node->name());
    node2dot[node.get()] = node_id;
  }
  // Create Edges
C
chengduo 已提交
336
  for (const auto &edge : edges()) {
337 338 339 340
    if (!node2dot.count(edge.first) || !node2dot.count(edge.second)) {
      LOG(ERROR) << "no node " << edge.first << " " << edge.second;
      continue;
    }
C
chengduo 已提交
341 342
    auto &src = node2dot.at(edge.first);
    auto &trg = node2dot.at(edge.second);
343 344 345 346 347
    dot.AddEdge(src, trg, {});
  }
  return dot.Build();
}

C
chengduo 已提交
348
PDNode &PDNode::LinksTo(const std::vector<PDNode *> &others) {
349
  // extend outlinks.
C
chengduo 已提交
350
  for (PDNode *x : others) {
351 352 353 354 355
    pattern_->AddEdge(this, x);
  }
  return *this;
}

C
chengduo 已提交
356
PDNode &PDNode::LinksFrom(const std::vector<PDNode *> &others) {
357
  // extend outlinks.
C
chengduo 已提交
358
  for (PDNode *x : others) {
359 360 361 362 363
    pattern_->AddEdge(x, this);
  }
  return *this;
}

C
chengduo 已提交
364 365
PDNode *PDNode::assert_is_op() {
  asserts_.emplace_back([](Node *x) { return x && x->IsOp(); });
Y
Yan Chunwei 已提交
366 367
  return this;
}
C
chengduo 已提交
368 369 370

PDNode *PDNode::assert_is_op(const std::string &op_type) {
  asserts_.emplace_back([op_type](Node *x) {
Y
Yan Chunwei 已提交
371 372 373 374
    return x && x->IsOp() && x->Op()->Type() == op_type;
  });
  return this;
}
C
chengduo 已提交
375 376 377 378 379 380 381 382

PDNode *PDNode::assert_is_var() {
  asserts_.emplace_back([](Node *x) { return x && x->IsVar(); });
  return this;
}

PDNode *PDNode::assert_is_not_ctrl_var() {
  asserts_.emplace_back([](Node *x) { return x && !x->IsCtrlVar(); });
Y
Yan Chunwei 已提交
383 384
  return this;
}
C
chengduo 已提交
385 386

PDNode *PDNode::assert_var_not_persistable() {
Y
Yan Chunwei 已提交
387
  assert_is_var();
C
chengduo 已提交
388
  asserts_.emplace_back([](Node *x) { return !x->Var()->Persistable(); });
Y
Yan Chunwei 已提交
389 390
  return this;
}
C
chengduo 已提交
391 392

PDNode *PDNode::assert_is_persistable_var() {
Y
Yan Chunwei 已提交
393
  assert_is_var();
C
chengduo 已提交
394
  asserts_.emplace_back([=](Node *x) { return x->Var()->Persistable(); });
Y
Yan Chunwei 已提交
395 396
  return this;
}
C
chengduo 已提交
397 398 399

PDNode *PDNode::assert_is_op_nth_input(const std::string &op_type,
                                       const std::string &argument, int nth) {
Y
Yan Chunwei 已提交
400 401
  assert_is_var();
  assert_is_op_input(op_type);
C
chengduo 已提交
402 403
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
404 405 406
      if (op->IsOp() && op->Op()->Type() == op_type &&
          IsNthInput(x, op, argument, nth))
        return true;
Y
Yan Chunwei 已提交
407 408 409 410 411
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
412 413 414

PDNode *PDNode::assert_is_op_nth_output(const std::string &op_type,
                                        const std::string &argument, int nth) {
Y
Yan Chunwei 已提交
415
  assert_is_var();
C
chengduo 已提交
416 417
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
418 419 420
      if (op->IsOp() && op->Op()->Type() == op_type &&
          IsNthOutput(x, op, argument, nth))
        return true;
Y
Yan Chunwei 已提交
421 422 423 424 425
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
426 427

PDNode *PDNode::assert_is_only_input_of_op(const std::string &op_type) {
Y
Yan Chunwei 已提交
428
  assert_is_var();
C
chengduo 已提交
429 430
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
Y
Yan Chunwei 已提交
431 432 433 434 435 436 437 438 439
      if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type &&
          op->inputs.size() == 1) {
        return true;
      }
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
440 441

PDNode *PDNode::assert_is_only_output_of_op(const std::string &op_type) {
Y
Yan Chunwei 已提交
442
  assert_is_var();
C
chengduo 已提交
443 444
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
Y
Yan Chunwei 已提交
445 446 447 448 449 450 451 452 453
      if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type &&
          op->outputs.size() == 1) {
        return true;
      }
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
454 455

PDNode *PDNode::assert_is_op_output(const std::string &op_type) {
Y
Yan Chunwei 已提交
456
  assert_is_var();
C
chengduo 已提交
457 458
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
Y
Yan Chunwei 已提交
459 460 461 462 463 464 465 466
      if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type) {
        return true;
      }
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
467 468 469

PDNode *PDNode::assert_is_op_output(const std::string &op_type,
                                    const std::string &argument) {
470 471 472 473
  assert_is_var();
  assert_is_op_nth_output(op_type, argument, 0);
  return this;
}
C
chengduo 已提交
474
PDNode *PDNode::assert_is_op_input(const std::string &op_type) {
Y
Yan Chunwei 已提交
475
  assert_is_var();
C
chengduo 已提交
476 477
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
Y
Yan Chunwei 已提交
478 479 480 481 482 483 484 485
      if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type) {
        return true;
      }
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
486 487 488

PDNode *PDNode::assert_is_op_input(const std::string &op_type,
                                   const std::string &argument) {
489 490 491 492
  assert_is_var();
  assert_is_op_nth_input(op_type, argument, 0);
  return this;
}
C
chengduo 已提交
493 494

PDNode *PDNode::assert_op_has_n_inputs(const std::string &op_type, size_t n) {
Y
Yan Chunwei 已提交
495
  assert_is_op(op_type);
C
chengduo 已提交
496
  asserts_.emplace_back([=](Node *x) { return x->inputs.size() == n; });
Y
Yan Chunwei 已提交
497 498
  return this;
}
C
chengduo 已提交
499 500

PDNode *PDNode::assert_op_has_n_outputs(const std::string &op_type, size_t n) {
Y
Yan Chunwei 已提交
501
  assert_is_op(op_type);
C
chengduo 已提交
502
  asserts_.emplace_back([=](Node *x) { return x->outputs.size() == n; });
Y
Yan Chunwei 已提交
503 504
  return this;
}
C
chengduo 已提交
505

506 507 508 509 510 511 512 513 514 515
PDNode *PDNode::assert_has_n_inputs(size_t n) {
  asserts_.emplace_back([=](Node *x) { return x->inputs.size() == n; });
  return this;
}

PDNode *PDNode::assert_has_n_outputs(size_t n) {
  asserts_.emplace_back([=](Node *x) { return x->outputs.size() == n; });
  return this;
}

C
chengduo 已提交
516
PDNode *PDNode::assert_more(PDNode::teller_t &&teller) {
Y
Yan Chunwei 已提交
517 518 519 520
  asserts_.emplace_back(std::move(teller));
  return this;
}

C
chengduo 已提交
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
PDNode *PDNode::assert_is_ops(const std::unordered_set<std::string> &op_types) {
  asserts_.emplace_back([op_types](Node *x) {
    return x && x->IsOp() && op_types.count(x->Op()->Type());
  });
  return this;
}

PDNode *PDNode::assert_is_ops_nth_input(
    const std::unordered_set<std::string> &op_types,
    const std::string &argument, int nth) {
  assert_is_var();
  assert_is_ops_input(op_types);
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
      if (op->IsOp() && op_types.count(op->Op()->Type()) &&
          IsNthInput(x, op, argument, nth))
        return true;
    }
    return false;
  });
  return this;
}

PDNode *PDNode::assert_is_ops_nth_output(
    const std::unordered_set<std::string> &op_types,
    const std::string &argument, int nth) {
  assert_is_var();
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
      if (op->IsOp() && op_types.count(op->Op()->Type()) &&
          IsNthOutput(x, op, argument, nth))
        return true;
    }
    return false;
  });
  return this;
}
PDNode *PDNode::assert_is_ops_output(
    const std::unordered_set<std::string> &op_types) {
  assert_is_var();
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
      if (op && op->IsOp() && op->Op() && op_types.count(op->Op()->Type())) {
        return true;
      }
    }
    return false;
  });
  return this;
}

PDNode *PDNode::assert_is_ops_output(
    const std::unordered_set<std::string> &op_types,
    const std::string &argument) {
  assert_is_var();
  assert_is_ops_nth_output(op_types, argument, 0);
  return this;
}

PDNode *PDNode::assert_is_ops_input(
    const std::unordered_set<std::string> &op_types) {
  assert_is_var();
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
      if (op && op->IsOp() && op->Op() && op_types.count(op->Op()->Type())) {
        return true;
      }
    }
    return false;
  });
  return this;
}

PDNode *PDNode::assert_is_ops_input(
    const std::unordered_set<std::string> &op_types,
    const std::string &argument) {
  assert_is_var();
  assert_is_ops_nth_input(op_types, argument, 0);
  return this;
}

bool VarLinksToOp(Node *node, const std::string &op_type) {
  for (auto *out : node->outputs) {
604 605 606 607 608 609
    if (out->IsOp() && out->Op()->Type() == op_type) {
      return true;
    }
  }
  return false;
}
C
chengduo 已提交
610 611

bool IsNthInput(Node *var, Node *op, const std::string &argument, size_t nth) {
612 613
  PADDLE_ENFORCE(var->IsVar());
  PADDLE_ENFORCE(op->IsOp());
614 615
  if (!HasInput(op, argument) || op->Op()->Input(argument).size() <= nth)
    return false;
616 617
  return var->Name() == op->Op()->Input(argument)[nth];
}
C
chengduo 已提交
618

619 620 621 622 623 624 625 626
bool HasInput(Node *op, const std::string &argument) {
  PADDLE_ENFORCE(op->IsOp());
  auto const &names = op->Op()->InputNames();
  if (std::find(names.begin(), names.end(), argument) == names.end())
    return false;
  return true;
}

C
chengduo 已提交
627
bool IsNthOutput(Node *var, Node *op, const std::string &argument, size_t nth) {
628 629 630 631 632
  PADDLE_ENFORCE(var->IsVar());
  PADDLE_ENFORCE(op->IsOp());
  if (op->Op()->Output(argument).size() <= nth) return false;
  return var->Name() == op->Op()->Output(argument)[nth];
}
C
chengduo 已提交
633 634 635 636 637

void GraphSafeRemoveNodes(Graph *graph,
                          const std::unordered_set<const Node *> &nodes) {
  for (auto *node : nodes) {
    graph->RemoveNode(const_cast<Node *>(node));
638 639
  }

C
chengduo 已提交
640
  for (auto *node : graph->Nodes()) {
641 642
    for (auto it = node->inputs.begin(); it != node->inputs.end();) {
      if (nodes.count(*it)) {
C
chengduo 已提交
643
        it = const_cast<Node *>(node)->inputs.erase(it);
644
      } else {
645
        it++;
646
      }
647 648 649
    }
    for (auto it = node->outputs.begin(); it != node->outputs.end();) {
      if (nodes.count(*it)) {
C
chengduo 已提交
650
        it = const_cast<Node *>(node)->outputs.erase(it);
651
      } else {
652
        it++;
653
      }
654 655 656
    }
  }
}
C
chengduo 已提交
657 658 659

bool VarLinksFromOp(Node *node, const std::string &op_type) {
  for (auto *out : node->inputs) {
660 661 662 663 664 665 666
    if (out->IsOp() && out->Op()->Type() == op_type) {
      return true;
    }
  }
  return false;
}

S
Sylwester Fraczek 已提交
667
PDNode *patterns::ConvBN::operator()(paddle::framework::ir::PDNode *conv_input,
668
                                     const std::string &conv_type,
S
Sylwester Fraczek 已提交
669 670
                                     bool with_eltwise_add) {
  // Create Operators
671 672
  conv_input->assert_is_op_input(conv_type, "Input");
  auto *conv_op = pattern->NewNode(conv_repr())->assert_is_op(conv_type);
S
Sylwester Fraczek 已提交
673 674 675 676 677 678 679 680 681 682 683 684 685

  PDNode *eltwise_op = nullptr;
  if (with_eltwise_add) {
    eltwise_op =
        pattern->NewNode(eltwise_repr())->assert_is_op("elementwise_add");
  }
  auto *batch_norm_op =
      pattern->NewNode(batch_norm_repr())->assert_is_op("batch_norm");
  // Create variables
  // Conv Filter
  auto *conv_weight_var = pattern->NewNode(conv_weight_repr())
                              ->AsInput()
                              ->assert_is_persistable_var()
686
                              ->assert_is_op_input(conv_type, "Filter");
S
Sylwester Fraczek 已提交
687 688 689

  auto *conv_out_var = pattern->NewNode(conv_out_repr())
                           ->AsIntermediate()
690
                           ->assert_is_only_output_of_op(conv_type);
S
Sylwester Fraczek 已提交
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773

  PDNode *eltwise_y_in_var = nullptr;
  PDNode *eltwise_out_var = nullptr;
  if (with_eltwise_add) {
    // Conv output as Bias input
    conv_out_var->assert_is_op_input("elementwise_add", "X");
    // Bias
    eltwise_y_in_var = pattern->NewNode(eltwise_y_in_repr())
                           ->assert_is_op_input("elementwise_add", "Y")
                           ->AsInput();
    eltwise_out_var = pattern->NewNode(eltwise_out_repr())
                          ->AsIntermediate()
                          ->assert_is_only_output_of_op("elementwise_add");
  } else {
    // Conv output as BN input
    conv_out_var->assert_is_op_input("batch_norm", "X");
  }

  // BN Scale
  auto *bn_scale_var = pattern->NewNode(bn_scale_repr())
                           ->AsInput()
                           ->assert_is_persistable_var()
                           ->assert_is_op_input("batch_norm", "Scale");
  // BN Bias
  auto *bn_bias_var = pattern->NewNode(bn_bias_repr())
                          ->AsInput()
                          ->assert_is_persistable_var()
                          ->assert_is_op_input("batch_norm", "Bias");
  // BN Mean
  auto *bn_mean_var = pattern->NewNode(bn_mean_repr())
                          ->AsInput()
                          ->assert_is_persistable_var()
                          ->assert_is_op_input("batch_norm", "Mean");
  // BN Variance
  auto *bn_variance_var = pattern->NewNode(bn_variance_repr())
                              ->AsInput()
                              ->assert_is_persistable_var()
                              ->assert_is_op_input("batch_norm", "Variance");

  // BN output
  auto *bn_out_var = pattern->NewNode(bn_out_repr())
                         ->AsOutput()
                         ->assert_is_op_output("batch_norm");

  auto *bn_mean_out_var = pattern->NewNode(bn_mean_out_repr())
                              ->AsOutput()
                              ->assert_is_op_output("batch_norm", "MeanOut");

  auto *bn_variance_out_var =
      pattern->NewNode(bn_variance_out_repr())
          ->AsOutput()
          ->assert_is_op_output("batch_norm", "VarianceOut");

  auto *bn_saved_mean_var =
      pattern->NewNode(bn_saved_mean_repr())
          ->AsOutput()
          ->assert_is_op_output("batch_norm", "SavedMean");

  auto *bn_saved_variance_var =
      pattern->NewNode(bn_saved_variance_repr())
          ->AsOutput()
          ->assert_is_op_output("batch_norm", "SavedVariance");

  conv_op->LinksFrom({conv_input, conv_weight_var}).LinksTo({conv_out_var});

  if (with_eltwise_add) {
    eltwise_op->LinksFrom({conv_out_var, eltwise_y_in_var})
        .LinksTo({eltwise_out_var});
    batch_norm_op
        ->LinksFrom({eltwise_out_var, bn_scale_var, bn_bias_var, bn_mean_var,
                     bn_variance_var})
        .LinksTo({bn_out_var, bn_mean_out_var, bn_variance_out_var,
                  bn_saved_mean_var, bn_saved_variance_var});
  } else {
    batch_norm_op
        ->LinksFrom({conv_out_var, bn_scale_var, bn_bias_var, bn_mean_var,
                     bn_variance_var})
        .LinksTo({bn_out_var, bn_mean_out_var, bn_variance_out_var,
                  bn_saved_mean_var, bn_saved_variance_var});
  }
  return bn_out_var;
}

774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
PDNode *patterns::ConvActivation::operator()(
    paddle::framework::ir::PDNode *conv_input, std::string conv_type,
    std::string activation_type) {
  // Create Operators
  conv_input->assert_is_op_input(conv_type, "Input");
  auto *conv_op = pattern->NewNode(conv_repr())->assert_is_op(conv_type);
  auto *activation_op =
      pattern->NewNode(activation_repr())->assert_is_op(activation_type);
  // Create variables
  // Filter
  auto *conv_weight_var = pattern->NewNode(conv_weight_repr())
                              ->AsInput()
                              ->assert_is_persistable_var()
                              ->assert_is_op_input(conv_type, "Filter");
  // intermediate variable, will be removed in the IR after fuse.
  auto *conv_out_var = pattern->NewNode(conv_out_repr())
                           ->AsIntermediate()
                           ->assert_is_only_output_of_op(conv_type)
                           ->assert_is_op_input(activation_type);
  // output
  auto *activation_out_var = pattern->NewNode(activation_out_repr())
                                 ->AsOutput()
                                 ->assert_is_op_output(activation_type);

  conv_op->LinksFrom({conv_input, conv_weight_var}).LinksTo({conv_out_var});
  activation_op->LinksFrom({conv_out_var}).LinksTo({activation_out_var});
  return activation_out_var;
}

T
tensor-tang 已提交
803 804 805 806
PDNode *patterns::SeqConvEltAddRelu::operator()(
    paddle::framework::ir::PDNode *seqconv_input) {
  // Create Operators
  seqconv_input->assert_is_op_input("sequence_conv", "X");
T
tensor-tang 已提交
807 808 809 810
  auto *seqconv_op = pattern->NewNode(seqconv_repr())
                         ->assert_is_op("sequence_conv")
                         ->assert_op_attr<bool>("paddingTrainable", false)
                         ->assert_op_attr<int>("contextStride", 1);
T
tensor-tang 已提交
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847

  auto *eltadd_op =
      pattern->NewNode(eltadd_repr())->assert_is_op("elementwise_add");
  auto *relu_op = pattern->NewNode(relu_repr())->assert_is_op("relu");
  // Create variables
  // Filter
  auto *seqconv_weight_var =
      pattern->NewNode(seqconv_weight_repr())
          ->AsInput()
          ->assert_is_persistable_var()
          ->assert_is_op_input("sequence_conv", "Filter");
  // Bias
  auto *eltadd_bias_var = pattern->NewNode(eltadd_bias_repr())
                              ->AsInput()
                              ->assert_is_op_input("elementwise_add");
  // intermediate variable, will be removed in the IR after fuse.
  auto *seqconv_out_var = pattern->NewNode(seqconv_out_repr())
                              ->AsIntermediate()
                              ->assert_is_only_output_of_op("sequence_conv")
                              ->assert_is_op_input("elementwise_add");
  auto *eltadd_out_var = pattern->NewNode(eltadd_out_repr())
                             ->AsIntermediate()
                             ->assert_is_only_output_of_op("elementwise_add")
                             ->assert_is_only_input_of_op("relu");
  // output
  auto *relu_out_var = pattern->NewNode(relu_out_repr())
                           ->AsOutput()
                           ->assert_is_op_output("relu");

  seqconv_op->LinksFrom({seqconv_input, seqconv_weight_var})
      .LinksTo({seqconv_out_var});
  eltadd_op->LinksFrom({seqconv_out_var, eltadd_bias_var})
      .LinksTo({eltadd_out_var});
  relu_op->LinksFrom({eltadd_out_var}).LinksTo({relu_out_var});
  return relu_out_var;
}

C
chengduo 已提交
848
PDNode *patterns::FC::operator()(paddle::framework::ir::PDNode *x,
849
                                 bool with_bias, bool with_relu) {
Y
Yan Chunwei 已提交
850 851
  // Create shared nodes.
  x->assert_is_op_input("mul", "X");
C
chengduo 已提交
852
  auto *mul = pattern->NewNode(mul_repr())->assert_is_op("mul");
Y
Yan Chunwei 已提交
853

C
chengduo 已提交
854
  auto *mul_w_var = pattern->NewNode(w_repr())
Y
Yan Chunwei 已提交
855 856 857 858
                        ->AsInput()
                        ->assert_is_persistable_var()
                        ->assert_is_op_input("mul", "Y");

C
chengduo 已提交
859
  auto *mul_out_var =
Y
Yan Chunwei 已提交
860 861
      pattern->NewNode(mul_out_repr())->assert_is_op_output("mul");

862 863
  // Add links.
  mul->LinksFrom({x, mul_w_var}).LinksTo({mul_out_var});
Y
Yan Chunwei 已提交
864 865 866 867 868
  if (!with_bias) {  // not with bias
    return mul_out_var;
  } else {  // with bias
    mul_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");
    // Create operators.
C
chengduo 已提交
869
    auto *elementwise_add = pattern->NewNode(elementwise_add_repr())
Y
Yan Chunwei 已提交
870 871
                                ->assert_is_op("elementwise_add");
    // Create variables.
C
chengduo 已提交
872
    auto *bias = pattern->NewNode(bias_repr())
Y
Yan Chunwei 已提交
873
                     ->assert_is_op_input("elementwise_add")
874
                     ->assert_is_persistable_var()
Y
Yan Chunwei 已提交
875 876
                     ->AsInput();

877 878 879 880
    auto *elementwise_add_out_var =
        pattern->NewNode(elementwise_add_out_repr())
            ->AsOutput()
            ->assert_is_op_output("elementwise_add");
Y
Yan Chunwei 已提交
881

882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
    elementwise_add->LinksFrom({mul_out_var, bias})
        .LinksTo({elementwise_add_out_var});
    if (!with_relu) {
      return elementwise_add_out_var;
    } else {
      elementwise_add_out_var->AsIntermediate()->assert_is_op_input("relu");
      // Create operators.
      auto *relu = pattern->NewNode(relu_repr())->assert_is_op("relu");
      auto *relu_out_var = pattern->NewNode(relu_out_repr())
                               ->AsOutput()
                               ->assert_is_op_output("relu");

      relu->LinksFrom({elementwise_add_out_var}).LinksTo({relu_out_var});
      return relu_out_var;
    }
897 898
  }
}
T
tensor-tang 已提交
899

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
PDNode *patterns::FCMKLDNN::operator()(paddle::framework::ir::PDNode *x,
                                       bool with_bias) {
  // Create shared nodes.
  x->assert_is_op_input("fc", "Input");

  auto *fc_op = pattern->NewNode(fc_repr())->assert_is_op("fc");
  // Create variables
  // Filter
  auto *fc_weight_var = pattern->NewNode(weights_repr())
                            ->AsInput()
                            ->assert_is_persistable_var()
                            ->assert_is_op_input("fc", "W");
  // Bias
  auto *fc_bias_var = pattern->NewNode(bias_repr())
                          ->AsInput()
                          ->assert_is_persistable_var()
                          ->assert_is_op_input("fc", "Bias");
  // Output
  auto *fc_out_var = pattern->NewNode(output_repr())
                         ->AsOutput()
                         ->assert_is_op_output("fc", "Out")
                         ->assert_is_only_output_of_op("fc");

  fc_op->LinksFrom({x, fc_weight_var, fc_bias_var}).LinksTo({fc_out_var});
  return fc_out_var;
}

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
PDNode *patterns::Embedding::operator()(PDNode *x) {
  x->assert_is_op_input("lookup_table", "Ids");
  auto *lookup_table_op =
      pattern->NewNode(lookup_table_repr())->assert_is_op("lookup_table");
#define NEW_NODE(arg__, io__)                    \
  auto *arg__ = pattern->NewNode(arg__##_repr()) \
                    ->assert_is_op_##io__("lookup_table", #arg__);

  NEW_NODE(W, input);

  NEW_NODE(Out, output);
#undef NEW_NODE

  lookup_table_op->LinksFrom({x, W});
  lookup_table_op->LinksTo({Out});
  return Out;
}

C
chengduo 已提交
945
PDNode *patterns::LSTM::operator()(PDNode *x) {
946
  x->assert_is_op_input("lstm", "Input");
C
chengduo 已提交
947
  auto *lstm_op = pattern->NewNode(lstm_repr())->assert_is_op("lstm");
Y
Yan Chunwei 已提交
948
#define NEW_NODE(arg__, io__) \
C
chengduo 已提交
949
  auto *arg__ =               \
Y
Yan Chunwei 已提交
950
      pattern->NewNode(arg__##_repr())->assert_is_op_##io__("lstm", #arg__);
951 952 953 954 955

  // Currently, the H0 and C0 are optional
  // TODO(Superjomn) upgrade the fuse framework to support optional.
  // NEW_NODE(H0, input);
  // NEW_NODE(C0, input);
Y
Yan Chunwei 已提交
956 957
  NEW_NODE(Weight, input);
  NEW_NODE(Bias, input);
958

Y
Yan Chunwei 已提交
959 960 961 962 963
  NEW_NODE(Hidden, output);
  NEW_NODE(Cell, output);
  NEW_NODE(BatchGate, output);
  NEW_NODE(BatchCellPreAct, output);
#undef NEW_NODE
964 965 966 967 968

  lstm_op->LinksFrom({x, Weight, Bias});
  lstm_op->LinksTo({Hidden, Cell, BatchGate, BatchCellPreAct});
  return Hidden;
}
T
tensor-tang 已提交
969

C
chengduo 已提交
970
PDNode *patterns::GRU::operator()(PDNode *x) {
T
tensor-tang 已提交
971
  x->assert_is_op_input("gru", "Input");
C
chengduo 已提交
972
  auto *gru_op = pattern->NewNode(gru_repr())->assert_is_op("gru");
Y
Yan Chunwei 已提交
973
#define NEW_NODE(arg__, io__) \
C
chengduo 已提交
974
  auto *arg__ =               \
Y
Yan Chunwei 已提交
975
      pattern->NewNode(arg__##_repr())->assert_is_op_##io__("gru", #arg__);
T
tensor-tang 已提交
976

Y
Yan Chunwei 已提交
977
  NEW_NODE(Weight, input);
T
tensor-tang 已提交
978 979
  // TODO(Superjomn): upgrade the fuse framework to support optional.
  // H0 and bias are optional
Y
Yan Chunwei 已提交
980
  NEW_NODE(Bias, input);  // also optional
T
tensor-tang 已提交
981 982
  // NEW_NODE(H0, input);

Y
Yan Chunwei 已提交
983
  NEW_NODE(Hidden, output);
T
tensor-tang 已提交
984
  // below are intermediate
Y
Yan Chunwei 已提交
985 986 987 988
  NEW_NODE(BatchGate, output);
  NEW_NODE(BatchResetHiddenPrev, output);
  NEW_NODE(BatchHidden, output);
#undef NEW_NODE
T
tensor-tang 已提交
989

T
tensor-tang 已提交
990 991 992 993
  BatchGate->AsIntermediate();
  BatchResetHiddenPrev->AsIntermediate();
  BatchHidden->AsIntermediate();

T
tensor-tang 已提交
994 995 996 997 998
  gru_op->LinksFrom({x, Weight, Bias});
  gru_op->LinksTo({Hidden, BatchGate, BatchResetHiddenPrev, BatchHidden});
  return Hidden;
}

C
chengduo 已提交
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
PDNode *patterns::ActElewiseAdd::operator()(
    paddle::framework::ir::PDNode *in_var,
    std::unordered_set<std::string> act_types) {
  in_var->assert_is_ops_input(act_types, "X");

  auto *act = pattern->NewNode(act_repr())->assert_is_ops(act_types);
  auto *act_out_var = pattern->NewNode(act_out_repr())
                          ->assert_is_not_ctrl_var()
                          ->assert_is_ops_output(act_types);
  act_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");

  auto *ele_x_var = pattern->NewNode(ele_x_repr())
                        ->assert_is_not_ctrl_var()
                        ->assert_is_op_input("elementwise_add")
                        ->AsInput();
  auto *elementwise_add =
      pattern->NewNode(ele_add_repr())->assert_is_op("elementwise_add");

  auto *elewise_add_out = pattern->NewNode(elewise_add_out_repr())
                              ->AsOutput()
                              ->assert_is_op_output("elementwise_add", "Out");

  act->LinksFrom({in_var}).LinksTo({act_out_var});
  elementwise_add->LinksFrom({act_out_var, ele_x_var})
      .LinksTo({elewise_add_out});

  return elewise_add_out;
}

PDNode *patterns::ElewiseAddAct::operator()(
    paddle::framework::ir::PDNode *ele_x_var,
    std::unordered_set<std::string> act_types) {
  auto *ele_y_var = pattern->NewNode(ele_y_repr())
                        ->assert_is_op_input("elementwise_add", "Y");

  auto *ele_add =
      pattern->NewNode(ele_add_repr())->assert_is_op("elementwise_add");

  auto *ele_out_var = pattern->NewNode(elewise_add_out_repr())
                          ->assert_is_op_output("elementwise_add", "Out");

  ele_out_var->AsIntermediate()->assert_is_ops_input(act_types);

  auto *act = pattern->NewNode(act_repr())->assert_is_ops(act_types);

  auto *act_out_var =
      pattern->NewNode(act_out_repr())->assert_is_ops_output(act_types, "Out");

  ele_add->LinksFrom({ele_x_var, ele_y_var}).LinksTo({ele_out_var});
  act->LinksFrom({ele_out_var}).LinksTo({act_out_var});

  return act_out_var;
}

PDNode *patterns::ElewiseAddActInplaceGrad::operator()(
    paddle::framework::ir::PDNode *d_act_out_var,
    std::unordered_set<std::string> act_types) {
  // act_grad: in["Out", "Out@GRAD"], out["X@GRAD"]
  // ele_add_grad: in["Y", "Out@GRAD"], out["X@GRAD", "Y@GRAD"]
  auto *act_grad = pattern->NewNode(act_grad_repr())->assert_is_ops(act_types);

  auto *act_out_var =
      pattern->NewNode(act_out_repr())->assert_is_ops_input(act_types, "Out");

  auto *d_intermediate_var =
      pattern->NewNode(d_itermediate_out_repr())
          ->assert_is_ops_output(act_types, GradVarName("X"));

  act_grad->LinksFrom({d_act_out_var, act_out_var})
      .LinksTo({d_intermediate_var});

  auto *ele_y_var = pattern->NewNode(ele_y_repr())
                        ->assert_is_not_ctrl_var()
                        ->assert_is_op_input("elementwise_add_grad", "Y");

  auto *ele_add_grad = pattern->NewNode(ele_add_grad_repr())
                           ->assert_is_op("elementwise_add_grad");

  auto *d_ele_x_var =
      pattern->NewNode(d_ele_x_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("elementwise_add_grad", GradVarName("X"));

  auto *d_ele_y_var =
      pattern->NewNode(d_ele_y_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("elementwise_add_grad", GradVarName("Y"));

  ele_add_grad->LinksFrom({d_intermediate_var, ele_y_var})
      .LinksTo({d_ele_x_var, d_ele_y_var});

  return ele_add_grad;
}

1093
// conv_type: conv2d, conv3d, conv2d_transpose
M
Michal Gallus 已提交
1094
PDNode *patterns::ConvBias::operator()(
1095
    paddle::framework::ir::PDNode *conv_input, std::string conv_type) {
M
Michal Gallus 已提交
1096
  // Create Operators
1097 1098
  conv_input->assert_is_op_input(conv_type, "Input");
  auto *conv_op = pattern->NewNode(conv_repr())->assert_is_op(conv_type);
M
Michal Gallus 已提交
1099 1100 1101 1102
  auto *eltiwse_op =
      pattern->NewNode(eltwise_repr())->assert_is_op("elementwise_add");
  // Create variables
  // Filter
Y
Yihua Xu 已提交
1103 1104 1105
  auto *conv_weight_var = pattern->NewNode(conv_weight_repr())
                              ->AsInput()
                              ->assert_is_persistable_var()
1106
                              ->assert_is_op_input(conv_type, "Filter");
M
Michal Gallus 已提交
1107
  // intermediate variable, will be removed in the IR after fuse.
Y
Yihua Xu 已提交
1108 1109
  auto *conv_out_var = pattern->NewNode(conv_out_repr())
                           ->AsIntermediate()
1110
                           ->assert_is_only_output_of_op(conv_type)
Y
Yihua Xu 已提交
1111
                           ->assert_is_op_input("elementwise_add");
M
Michal Gallus 已提交
1112 1113 1114
  // Bias stored in elementwise_add
  auto *eltwise_bias_var = pattern->NewNode(eltwise_bias_repr())
                               ->AsInput()
M
Michal Gallus 已提交
1115
                               ->assert_is_persistable_var()
M
Michal Gallus 已提交
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
                               ->assert_is_op_input("elementwise_add", "Y");
  // output
  auto *eltwise_out_var = pattern->NewNode(eltwise_out_repr())
                              ->AsOutput()
                              ->assert_is_op_output("elementwise_add");
  conv_op->LinksFrom({conv_input, conv_weight_var}).LinksTo({conv_out_var});
  eltiwse_op->LinksFrom({conv_out_var, eltwise_bias_var})
      .LinksTo({eltwise_out_var});
  return eltwise_out_var;
}

1127 1128 1129 1130
PDNode *patterns::Conv::operator()() {
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");

  auto input_var = pattern->NewNode(conv_input_repr())
1131
                       ->AsInput()
1132 1133 1134
                       ->assert_is_op_input("conv2d", "Input");

  auto filter_var = pattern->NewNode(conv_filter_repr())
1135
                        ->AsInput()
1136 1137 1138
                        ->assert_is_op_input("conv2d", "Filter");

  auto output_var = pattern->NewNode(conv_output_repr())
1139
                        ->AsOutput()
1140 1141
                        ->assert_is_op_output("conv2d", "Output");

1142 1143 1144 1145
  conv_op->LinksFrom({input_var, filter_var}).LinksTo({output_var});
  return output_var;
}

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
PDNode *patterns::Transpose::operator()() {
  auto prev_op = pattern->NewNode(prev_op_repr())->assert_is_op();

  auto transpose_op =
      pattern->NewNode(transpose_op_repr())->assert_is_op("transpose2");

  auto transpose_in = pattern->NewNode(transpose_in_repr())
                          ->AsInput()
                          ->assert_is_op_input("transpose2");
  auto transpose_out = pattern->NewNode(transpose_out_repr())
                           ->AsOutput()
                           ->assert_is_op_output("transpose2", "Out");

  auto next_op = pattern->NewNode(next_op_repr())->assert_is_op();

  prev_op->LinksTo({transpose_in});
  transpose_op->LinksFrom({transpose_in}).LinksTo({transpose_out});
  next_op->LinksFrom({transpose_out});
  return transpose_out;
}

1167 1168 1169
PDNode *patterns::ConvResidual::operator()(bool with_residual_data) {
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");

1170 1171 1172 1173 1174 1175 1176 1177 1178
  if (!with_residual_data) {
    conv_op->assert_more([&](Node *x) {
      auto node_names = x->Op()->InputNames();
      if (!HasInput(x, "ResidualData") ||
          x->Op()->Input("ResidualData").size() == 0)
        return true;
      return false;
    });
  }
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214

  auto input_var = pattern->NewNode(conv_input_repr())
                       ->AsInput()
                       ->assert_is_op_input("conv2d", "Input");

  auto filter_var = pattern->NewNode(conv_filter_repr())
                        ->AsInput()
                        ->assert_is_op_input("conv2d", "Filter");

  auto output_var = pattern->NewNode(conv_output_repr())
                        ->AsOutput()
                        ->assert_is_op_output("conv2d", "Output");

  std::vector<PDNode *> links_from{input_var, filter_var};

  if (with_residual_data) {
    auto res_conn_var = pattern->NewNode(conv_residual_data_repr())
                            ->AsInput()
                            ->assert_is_op_input("conv2d", "ResidualData");
    links_from.push_back(res_conn_var);
  }

  conv_op->LinksFrom(links_from).LinksTo({output_var});
  return output_var;
}

PDNode *patterns::Pool::operator()() {
  auto pool_op = pattern->NewNode(pool_op_repr())->assert_is_op("pool2d");

  auto input_var = pattern->NewNode(pool_input_repr())
                       ->AsInput()
                       ->assert_is_op_input("pool2d", "X");

  auto output_var = pattern->NewNode(pool_output_repr())
                        ->AsOutput()
                        ->assert_is_op_output("pool2d", "Out");
1215

1216
  pool_op->LinksFrom({input_var}).LinksTo({output_var});
1217 1218 1219
  return output_var;
}

1220
PDNode *patterns::ElementwiseAdd::operator()(PDNode *x_var, PDNode *y_var) {
1221 1222 1223
  auto elementwise_add_op = pattern->NewNode(elementwise_add_op_repr())
                                ->assert_is_op("elementwise_add");

1224 1225
  x_var->AsInput()->assert_is_op_input("elementwise_add", "X");
  y_var->AsInput()->assert_is_op_input("elementwise_add", "Y");
1226 1227 1228 1229
  auto out_var = pattern->NewNode(elementwise_add_out_repr())
                     ->AsOutput()
                     ->assert_is_op_output("elementwise_add", "Out");

1230
  elementwise_add_op->LinksFrom({x_var, y_var});
1231 1232 1233 1234
  elementwise_add_op->LinksTo({out_var});

  return out_var;
}
1235

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
PDNode *patterns::Concat::operator()() {
  auto concat_op = pattern->NewNode(concat_op_repr())->assert_is_op("concat");

  auto output_var = pattern->NewNode(concat_out_repr())
                        ->AsOutput()
                        ->assert_is_op_output("concat", "Out");

  concat_op->LinksTo({output_var});
  return output_var;
}

1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
PDNode *patterns::ConcatReLU::operator()() {
  auto concat_op = pattern->NewNode(concat_op_repr())->assert_is_op("concat");
  auto relu_op = pattern->NewNode(relu_op_repr())->assert_is_op("relu");

  auto concat_out =
      pattern->NewNode(concat_out_repr())->assert_is_op_output("concat", "Out");

  auto relu_out = pattern->NewNode(relu_out_repr())
                      ->AsOutput()
                      ->assert_is_op_output("relu", "Out");

  concat_op->LinksTo({concat_out});
  relu_op->LinksFrom({concat_out}).LinksTo({relu_out});

  return relu_out;
}

PDNode *patterns::ConvConcatReLU::operator()() {
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");
  auto concat_op = pattern->NewNode(concat_op_repr())->assert_is_op("concat");
  auto relu_op = pattern->NewNode(relu_op_repr())->assert_is_op("relu");

  auto conv_out = pattern->NewNode(conv_out_repr())
                      ->assert_is_op_output("conv2d", "Output");

  auto concat_out = pattern->NewNode(concat_out_repr())
                        ->assert_is_op_output("concat", "Out")
                        ->assert_is_op_input("relu", "X");

  auto relu_out = pattern->NewNode(relu_out_repr())
                      ->AsOutput()
                      ->assert_is_op_output("relu", "Out");

  conv_op->LinksTo({conv_out});
  concat_op->LinksFrom({conv_out}).LinksTo({concat_out});
  relu_op->LinksFrom({concat_out}).LinksTo({relu_out});

  return relu_out;
}

1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
PDNode *patterns::ConvRequant::operator()() {
  // Create Operators
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");
  auto requant_op =
      pattern->NewNode(requant_op_repr())->assert_is_op("requantize");
  auto conv_out = pattern->NewNode(conv_out_repr())
                      ->assert_is_op_output("conv2d", "Output");
  auto requant_out = pattern->NewNode(requant_out_repr())
                         ->AsOutput()
                         ->assert_is_op_output("requantize", "Output");

  conv_op->LinksTo({conv_out});
  requant_op->LinksFrom({conv_out}).LinksTo({requant_out});

  return requant_out;
}

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
PDNode *patterns::ConvDequant::operator()() {
  // Create Operators
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");
  auto dequant_op =
      pattern->NewNode(dequant_op_repr())->assert_is_op("dequantize");

  auto conv_out = pattern->NewNode(conv_out_repr())
                      ->assert_is_op_output("conv2d", "Output");
  auto dequant_out = pattern->NewNode(dequant_out_repr())
                         ->AsOutput()
                         ->assert_is_op_output("dequantize", "Output");

  conv_op->LinksTo({conv_out});
  dequant_op->LinksFrom({conv_out}).LinksTo({dequant_out});

  return dequant_out;
}

1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
PDNode *patterns::PriorBox::operator()() {
  auto prior_box_op =
      pattern->NewNode(prior_box_op_repr())->assert_is_op("prior_box");

  auto input_var = pattern->NewNode(prior_box_input_repr())
                       ->AsInput()
                       ->assert_is_op_input("prior_box", "Input");

  auto image_var = pattern->NewNode(prior_box_image_repr())
                       ->AsInput()
                       ->assert_is_op_input("prior_box", "Image");

  auto boxes_var = pattern->NewNode(prior_box_boxes_repr())
                       ->AsOutput()
                       ->assert_is_op_output("prior_box", "Boxes");

  auto variances_var = pattern->NewNode(prior_box_variances_repr())
                           ->AsOutput()
                           ->assert_is_op_output("prior_box", "Variances");

  prior_box_op->LinksFrom({input_var, image_var})
      .LinksTo({boxes_var, variances_var});
  return boxes_var;
}

H
hjchen2 已提交
1347
std::unordered_set<std::string> conv_act_set({"identity", "relu"});
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412

PDNode *patterns::ConvElementwiseaddAct::operator()(PDNode *conv_in) {
  conv_in->AsInput();
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");
  auto conv_out = pattern->NewNode(conv_out_repr())
                      ->assert_is_op_output("conv2d")
                      ->assert_is_op_input("elementwise_add", "X")
                      ->AsIntermediate();
  auto conv_filter = pattern->NewNode(conv_filter_repr())
                         ->assert_is_op_input("conv2d", "Filter")
                         ->AsInput();
  auto elementwise_add_op = pattern->NewNode(elementwise_add_op_repr())
                                ->assert_is_op("elementwise_add");
  auto elementwise_add_in_y = pattern->NewNode(elementwise_add_in_y_repr())
                                  ->assert_is_op_input("elementwise_add", "Y")
                                  ->AsInput();
  auto elementwise_add_out = pattern->NewNode(elementwise_add_out_repr())
                                 ->assert_is_op_output("elementwise_add")
                                 ->AsIntermediate();

  auto act_op = pattern->NewNode(act_op_repr())
                    ->assert_is_op()
                    ->assert_more([&](Node *node) {
                      auto op_type = node->Name();
                      return conv_act_set.count(op_type);
                    });

  auto act_out = pattern->NewNode(act_out_repr())
                     ->assert_is_var()
                     // is activation op's output.
                     ->assert_more([&](Node *node) {
                       for (auto *in_op : node->inputs) {
                         if (conv_act_set.count(in_op->Name())) {
                           return true;
                         }
                       }
                       return false;
                     })
                     ->AsOutput();

  conv_op->LinksFrom({conv_in, conv_filter});
  conv_out->LinksFrom({conv_op});
  elementwise_add_op->LinksFrom({conv_out, elementwise_add_in_y})
      .LinksTo({elementwise_add_out});
  act_op->LinksFrom({elementwise_add_out}).LinksTo({act_out});

  return act_out;
}

PDNode *patterns::ConvElementwiseadd2Act::operator()(PDNode *conv_in) {
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");
  auto conv_filter = pattern->NewNode(conv_filter_repr())
                         ->assert_is_op_input("conv2d", "Filter")
                         ->AsInput();
  auto conv_out = pattern->NewNode(conv_out_repr())
                      ->assert_is_op_output("conv2d")
                      ->assert_is_op_input("elementwise_add", "X")
                      ->AsIntermediate();
  auto elementwise_add_op = pattern->NewNode(elementwise_add_op_repr())
                                ->assert_is_op("elementwise_add");
  auto elementwise_add_in_y = pattern->NewNode(elementwise_add_in_y_repr())
                                  ->assert_is_op_input("elementwise_add", "Y")
                                  ->AsInput();
  auto elementwise_add_out = pattern->NewNode(elementwise_add_out_repr())
                                 ->assert_is_op_output("elementwise_add")
H
hjchen2 已提交
1413
                                 ->assert_is_op_input("elementwise_add", "Y")
1414 1415 1416 1417 1418
                                 ->AsIntermediate();

  auto elementwise_add_op_1 = pattern->NewNode(elementwise_add_op_1_repr())
                                  ->assert_is_op("elementwise_add");
  auto elementwise_add_in_y_1 = pattern->NewNode(elementwise_add_in_y_1_repr())
H
hjchen2 已提交
1419
                                    ->assert_is_op_input("elementwise_add", "X")
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
                                    ->AsInput();
  auto elementwise_add_out_1 = pattern->NewNode(elementwise_add_out_1_repr())
                                   ->assert_is_op_output("elementwise_add")
                                   ->AsIntermediate();

  auto act_op = pattern->NewNode(act_op_repr())
                    ->assert_is_op()
                    ->assert_more([&](Node *node) {
                      auto op_type = node->Name();
                      return conv_act_set.count(op_type);
                    });
  auto act_out = pattern->NewNode(act_out_repr())
                     ->assert_is_var()
                     // is activation op's output.
                     ->assert_more([&](Node *node) {
                       for (auto *in_op : node->inputs) {
                         if (conv_act_set.count(in_op->Name())) {
                           return true;
                         }
                       }
                       return false;
                     })
                     ->AsOutput();

  conv_op->LinksFrom({conv_in, conv_filter}).LinksTo({conv_out});
  elementwise_add_op->LinksFrom({conv_out, elementwise_add_in_y})
      .LinksTo({elementwise_add_out});
H
hjchen2 已提交
1447 1448
  elementwise_add_op_1->LinksFrom({elementwise_add_out, elementwise_add_in_y_1})
      .LinksTo({elementwise_add_out_1});
1449 1450 1451 1452
  act_op->LinksFrom({elementwise_add_out_1}).LinksTo({act_out});
  return act_out;
}

N
nhzlx 已提交
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
PDNode *patterns::ConvElementwiseadd::operator()(PDNode *conv_in) {
  conv_in->AsInput();
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");
  auto conv_out = pattern->NewNode(conv_out_repr())
                      ->assert_is_op_output("conv2d")
                      ->assert_is_op_input("elementwise_add", "X")
                      ->AsIntermediate();
  auto conv_filter = pattern->NewNode(conv_filter_repr())
                         ->assert_is_op_input("conv2d", "Filter")
                         ->AsInput();
  auto elementwise_add_op = pattern->NewNode(elementwise_add_op_repr())
                                ->assert_is_op("elementwise_add");
  auto elementwise_add_in_y = pattern->NewNode(elementwise_add_in_y_repr())
                                  ->assert_is_op_input("elementwise_add", "Y")
                                  ->AsInput();
  auto elementwise_add_out = pattern->NewNode(elementwise_add_out_repr())
                                 ->assert_is_op_output("elementwise_add")
                                 ->AsOutput();

  conv_op->LinksFrom({conv_in, conv_filter});
  conv_out->LinksFrom({conv_op});
  elementwise_add_op->LinksFrom({conv_out, elementwise_add_in_y})
      .LinksTo({elementwise_add_out});

  return elementwise_add_out;
}

N
nhzlx 已提交
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
PDNode *patterns::ConvAffineChannel::operator()(
    paddle::framework::ir::PDNode *conv_input, bool with_eltwise_add) {
  // Create Operators
  conv_input->assert_is_op_input("conv2d", "Input");
  auto *conv_op = pattern->NewNode(conv_repr())->assert_is_op("conv2d");

  PDNode *eltwise_op = nullptr;
  if (with_eltwise_add) {
    eltwise_op =
        pattern->NewNode(eltwise_repr())->assert_is_op("elementwise_add");
  }

  auto *affine_channel_op =
      pattern->NewNode(affine_channel_repr())->assert_is_op("affine_channel");
  // Create variables
  // Conv Filter
  auto *conv_weight_var = pattern->NewNode(conv_weight_repr())
                              ->AsInput()
                              ->assert_is_persistable_var()
                              ->assert_is_op_input("conv2d", "Filter");

  auto *conv_out_var = pattern->NewNode(conv_out_repr())
                           ->AsIntermediate()
                           ->assert_is_only_output_of_op("conv2d");

  PDNode *eltwise_y_in_var = nullptr;
  PDNode *eltwise_out_var = nullptr;
  if (with_eltwise_add) {
    // Conv output as Bias input
    conv_out_var->assert_is_op_input("elementwise_add", "X");
    // Bias
    eltwise_y_in_var = pattern->NewNode(eltwise_y_in_repr())
                           ->assert_is_op_input("elementwise_add", "Y")
                           ->AsInput();
    eltwise_out_var = pattern->NewNode(eltwise_out_repr())
                          ->AsIntermediate()
                          ->assert_is_only_output_of_op("elementwise_add");
  } else {
    // Conv output as AffineChannel input
    conv_out_var->assert_is_op_input("affine_channel", "X");
  }

  // AC Scale
  auto *ac_scale_var = pattern->NewNode(ac_scale_repr())
                           ->AsInput()
                           ->assert_is_persistable_var()
1526
                           ->assert_has_n_outputs(1)
N
nhzlx 已提交
1527 1528 1529 1530 1531
                           ->assert_is_op_input("affine_channel", "Scale");
  // AC Bias
  auto *ac_bias_var = pattern->NewNode(ac_bias_repr())
                          ->AsInput()
                          ->assert_is_persistable_var()
1532
                          ->assert_has_n_outputs(1)
N
nhzlx 已提交
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
                          ->assert_is_op_input("affine_channel", "Bias");

  // AC output
  auto *ac_out_var = pattern->NewNode(ac_out_repr())
                         ->AsOutput()
                         ->assert_is_op_output("affine_channel");

  conv_op->LinksFrom({conv_input, conv_weight_var}).LinksTo({conv_out_var});

  if (with_eltwise_add) {
    eltwise_op->LinksFrom({conv_out_var, eltwise_y_in_var})
        .LinksTo({eltwise_out_var});
    affine_channel_op->LinksFrom({eltwise_out_var, ac_scale_var, ac_bias_var})
        .LinksTo({ac_out_var});
  } else {
    affine_channel_op->LinksFrom({conv_out_var, ac_scale_var, ac_bias_var})
        .LinksTo({ac_out_var});
  }
  return ac_out_var;
}

1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
PDNode *patterns::DequantQuantAny::operator()() {
  auto *dequant_in = pattern->NewNode(dequant_in_repr())
                         ->AsInput()
                         ->assert_is_op_input("dequantize", "Input");

  auto *dequant_op =
      pattern->NewNode(dequant_op_repr())->assert_is_op("dequantize");

  auto *dequant_out = pattern->NewNode(dequant_out_repr())
                          ->AsOutput()
                          ->assert_is_op_output("dequantize", "Output");

  auto *quant_op = pattern->NewNode(quant_op_repr())
                       ->assert_is_op("quantize")
                       ->AsIntermediate();

  auto *quant_out = pattern->NewNode(quant_out_repr())
                        ->AsOutput()
                        ->assert_is_op_output("quantize");

  auto *next_op = pattern->NewNode(next_op_repr())->assert_is_op();

  dequant_op->LinksFrom({dequant_in}).LinksTo({dequant_out});
  quant_op->LinksFrom({dequant_out}).LinksTo({quant_out});
  next_op->LinksFrom({quant_out});

  return quant_out;
}

PDNode *patterns::DequantAny::operator()() {
  auto *dequant_op =
      pattern->NewNode(dequant_op_repr())->assert_is_op("dequantize");

  auto *dequant_out = pattern->NewNode(dequant_out_repr())
                          ->AsOutput()
                          ->assert_is_op_output("dequantize", "Output");

  auto *next_op = pattern->NewNode(next_op_repr())->assert_is_op();

  dequant_op->LinksTo({dequant_out});
  next_op->LinksFrom({dequant_out});

  return dequant_out;
}

1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
// a -> transpose_op(1) -> transpose_out_a -> flatten_op(1) -> flatten_out_a
// b -> transpose_op(2) -> transpose_out_b -> flatten_op(2) -> flatten_out_b
// ...
// z -> transpose_op(n) -> transpose_out_z -> flatten_op(n) -> flatten_out_z
// flatten_out_a -> concat_op  flatten_out_b -> concat_op ... flatten_out_z ->
// concat_op
PDNode *patterns::TransposeFlattenConcat::operator()(
    std::vector<PDNode *> conv_in, int times) {
  // The times represents the repeat times of the
  // {trans, trans_out, flatten, flatten_out}
  const int kNumFields = 4;
  const int kTransOutOffset = 1;
  const int kFlattenOffset = 2;
  const int kFlattenOutOffset = 3;

  std::vector<PDNode *> nodes;

  for (int i = 0; i < times; i++) {
    nodes.push_back(
        pattern->NewNode(GetNodeName("transpose" + std::to_string(i)))
            ->assert_is_op("transpose2"));
    nodes.push_back(
        pattern->NewNode(GetNodeName("transpose_out" + std::to_string(i)))
            ->assert_is_op_output("transpose2")
            ->assert_is_op_input("flatten2", "X")
            ->AsIntermediate());
    nodes.push_back(pattern->NewNode(GetNodeName("flatten" + std::to_string(i)))
                        ->assert_is_op("flatten2"));

    nodes.push_back(
        pattern->NewNode(GetNodeName("flatten_out" + std::to_string(i)))
            ->assert_is_op_output("flatten2")
            ->assert_is_op_nth_input("concat", "X", i)
            ->AsIntermediate());
  }

  auto concat_op = pattern->NewNode(GetNodeName("concat"))
                       ->assert_is_op("concat")
                       ->assert_op_has_n_inputs("concat", times);
  auto concat_out = pattern->NewNode(GetNodeName("concat_out"))
                        ->assert_is_op_output("concat")
                        ->AsOutput();

  std::vector<PDNode *> flatten_outs;
  for (int i = 0; i < times; i++) {
    conv_in[i]->AsInput();
    // trans
    nodes[i * kNumFields]->LinksFrom({conv_in[i]});
    // trans_out
    nodes[i * kNumFields + kTransOutOffset]->LinksFrom({nodes[i * kNumFields]});
    // flatten
    nodes[i * kNumFields + kFlattenOffset]->LinksFrom(
        {nodes[i * kNumFields + kTransOutOffset]});
    // flatten_out
    nodes[i * kNumFields + kFlattenOutOffset]->LinksFrom(
        {nodes[i * kNumFields + kFlattenOffset]});
    flatten_outs.push_back(nodes[i * kNumFields + kFlattenOutOffset]);
  }

  concat_op->LinksFrom(flatten_outs).LinksTo({concat_out});
  return concat_out;
}

1662
PDNode *patterns::AnakinDetectionPattern::operator()(
N
nhzlx 已提交
1663 1664
    std::vector<PDNode *> conv_in, int times, std::string priorbox_type,
    bool is_reshape) {
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
  // The times represents the repeat times of the
  // {prior_box, prior_box_loc_out, flatten, prior_box_var_out, reshape}
  const int kNumFields = 7;
  const int kPriorBoxLocOffset = 1;
  const int kReshape1Offset = 2;
  const int kReshape1OutOffset = 3;
  const int kPriorBoxVarOffset = 4;
  const int kReshape2Offset = 5;
  const int kReshape2OutOffset = 6;

  const int kBoxCoderThirdInputOffset = times;
  const int kMultiClassSecondInputNmsOffset = times + 1;

  std::vector<PDNode *> nodes;
N
nhzlx 已提交
1679
  std::string op_after_priorbox = is_reshape ? "reshape2" : "flatten2";
1680 1681 1682 1683

  for (int i = 0; i < times; i++) {
    nodes.push_back(
        pattern->NewNode(GetNodeName("prior_box" + std::to_string(i)))
N
nhzlx 已提交
1684
            ->assert_is_op(priorbox_type));
1685
    nodes.push_back(pattern->NewNode(GetNodeName("box_out" + std::to_string(i)))
N
nhzlx 已提交
1686 1687
                        ->assert_is_op_output(priorbox_type, "Boxes")
                        ->assert_is_op_input(op_after_priorbox, "X")
1688 1689 1690
                        ->AsIntermediate());
    nodes.push_back(
        pattern->NewNode(GetNodeName("reshape1" + std::to_string(i)))
N
nhzlx 已提交
1691
            ->assert_is_op(op_after_priorbox));
1692 1693 1694

    nodes.push_back(
        pattern->NewNode(GetNodeName("reshape1_out" + std::to_string(i)))
N
nhzlx 已提交
1695
            ->assert_is_op_output(op_after_priorbox)
1696 1697 1698 1699 1700
            ->assert_is_op_nth_input("concat", "X", i)
            ->AsIntermediate());

    nodes.push_back(
        pattern->NewNode(GetNodeName("box_var_out" + std::to_string(i)))
N
nhzlx 已提交
1701 1702
            ->assert_is_op_output(priorbox_type, "Variances")
            ->assert_is_op_input(op_after_priorbox, "X")
1703 1704 1705
            ->AsIntermediate());
    nodes.push_back(
        pattern->NewNode(GetNodeName("reshape2" + std::to_string(i)))
N
nhzlx 已提交
1706
            ->assert_is_op(op_after_priorbox));
1707 1708 1709

    nodes.push_back(
        pattern->NewNode(GetNodeName("reshape2_out" + std::to_string(i)))
N
nhzlx 已提交
1710
            ->assert_is_op_output(op_after_priorbox)
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
            ->assert_is_op_nth_input("concat", "X", i)
            ->AsIntermediate());
  }

  auto concat_op1 = pattern->NewNode(GetNodeName("concat1"))
                        ->assert_is_op("concat")
                        ->assert_op_has_n_inputs("concat", times);
  auto concat_out1 = pattern->NewNode(GetNodeName("concat1_out"))
                         ->assert_is_op_output("concat")
                         ->AsIntermediate();

  auto concat_op2 = pattern->NewNode(GetNodeName("concat2"))
                        ->assert_is_op("concat")
                        ->assert_op_has_n_inputs("concat", times);
  auto concat_out2 = pattern->NewNode(GetNodeName("concat2_out"))
                         ->assert_is_op_output("concat")
                         ->AsIntermediate();

  auto box_coder_op = pattern->NewNode(GetNodeName("box_coder"))
                          ->assert_is_op("box_coder")
                          ->assert_op_has_n_inputs("box_coder", 3);

  auto box_coder_out = pattern->NewNode(GetNodeName("box_coder_out"))
                           ->assert_is_op_output("box_coder")
                           ->AsIntermediate();

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
  auto transpose_before_nms =
      pattern->NewNode(GetNodeName("transpose_before_nms"))
          ->assert_is_op("transpose2");

  auto transpose_before_nms_out =
      pattern->NewNode(GetNodeName("transpose_before_nms_out"))
          ->assert_is_op_output("transpose2")
          ->assert_is_op_input("multiclass_nms", "Scores")
          ->AsIntermediate();

1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
  auto multiclass_nms_op = pattern->NewNode(GetNodeName("multiclass_nms"))
                               ->assert_is_op("multiclass_nms")
                               ->assert_op_has_n_inputs("multiclass_nms", 2);

  auto multiclass_nms_out = pattern->NewNode(GetNodeName("multiclass_nms_out"))
                                ->assert_is_op_output("multiclass_nms")
                                ->AsOutput();

  std::vector<PDNode *> reshape1_outs;
  std::vector<PDNode *> reshape2_outs;

  for (int i = 0; i < times; i++) {
    conv_in[i]->AsInput();
    // prior_box
    nodes[i * kNumFields]->LinksFrom({conv_in[i]});
    // prior_box box out
    nodes[i * kNumFields + kPriorBoxLocOffset]->LinksFrom(
        {nodes[i * kNumFields]});
    // reshape
    nodes[i * kNumFields + kReshape1Offset]->LinksFrom(
        {nodes[i * kNumFields + kPriorBoxLocOffset]});
    // reshape_out
    nodes[i * kNumFields + kReshape1OutOffset]->LinksFrom(
        {nodes[i * kNumFields + kReshape1Offset]});

    nodes[i * kNumFields + kPriorBoxVarOffset]->LinksFrom(
        {nodes[i * kNumFields]});
    // reshape
    nodes[i * kNumFields + kReshape2Offset]->LinksFrom(
        {nodes[i * kNumFields + kPriorBoxVarOffset]});
    // reshape_out
    nodes[i * kNumFields + kReshape2OutOffset]->LinksFrom(
        {nodes[i * kNumFields + kReshape2Offset]});

    reshape1_outs.push_back(nodes[i * kNumFields + kReshape1OutOffset]);
    reshape2_outs.push_back(nodes[i * kNumFields + kReshape2OutOffset]);
  }

  concat_op1->LinksFrom(reshape1_outs);
  concat_op2->LinksFrom(reshape2_outs);
  concat_out1->LinksFrom({concat_op1});
  concat_out2->LinksFrom({concat_op2});

  conv_in[kBoxCoderThirdInputOffset]->AsInput();
  conv_in[kMultiClassSecondInputNmsOffset]->AsInput();

  box_coder_op->LinksFrom(
      {concat_out1, concat_out2, conv_in[kBoxCoderThirdInputOffset]});
  box_coder_out->LinksFrom({box_coder_op});

1797 1798 1799 1800
  transpose_before_nms->LinksFrom({conv_in[kMultiClassSecondInputNmsOffset]});
  transpose_before_nms_out->LinksFrom({transpose_before_nms});

  multiclass_nms_op->LinksFrom({box_coder_out, transpose_before_nms_out})
1801 1802 1803 1804 1805
      .LinksTo({multiclass_nms_out});

  return multiclass_nms_out;
}

N
nhzlx 已提交
1806
PDNode *patterns::FillConstantElementWiseMulFuse::operator()(
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
    PDNode *elementwise_op_input) {
  auto fill_constant =
      pattern->NewNode(fill_constant_repr())->assert_is_op("fill_constant");

  auto fill_constant_out = pattern->NewNode(fill_constant_out_repr())
                               ->assert_is_op_output("fill_constant")
                               ->assert_is_op_input("elementwise_mul", "Y")
                               ->AsIntermediate();

  auto elementwise_mul_op =
      pattern->NewNode(elementwise_mul_repr())->assert_is_op("elementwise_mul");

  auto elementwise_mul_out = pattern->NewNode(elementwise_mul_out_repr())
                                 ->assert_is_op_output("elementwise_mul")
                                 ->AsOutput();

  fill_constant_out->LinksFrom({fill_constant});
  elementwise_mul_op->LinksFrom({elementwise_op_input, fill_constant_out});
  elementwise_mul_out->LinksFrom({elementwise_mul_op});
  return elementwise_mul_out;
}

N
nhzlx 已提交
1829 1830 1831
void patterns::QuantDequantOpFuse::operator()(PDNode *quant_op_input,
                                              const std::string &op_type,
                                              const std::string &weight_name,
1832
                                              int times,
1833 1834 1835
                                              const std::string &quant_type,
                                              const std::string &dequant_type) {
  int kNumFields = 5;
N
nhzlx 已提交
1836 1837 1838 1839 1840
  const int kQuantizedWeightOffset = 0;
  const int kQuantizedOpOffset = 1;
  const int kQuantizedOpOutOffset = 2;
  const int kDequantOpOffset = 3;
  const int kDequantOpOutOffset = 4;
1841 1842
  const int kDequantOpWeightScaleOffset = 5;

N
nhzlx 已提交
1843
  // the quant op always be one.
1844 1845 1846 1847 1848
  auto quant_op_in_scale = pattern->NewNode(GetNodeName("quant_op_in_scale"))
                               ->assert_is_op_input(quant_type, "InScale")
                               ->AsInput();
  auto quant_op =
      pattern->NewNode(GetNodeName("quant_op"))->assert_is_op(quant_type);
N
nhzlx 已提交
1849

1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
  PDNode *quant_op_out_scale = nullptr;
  if (dequant_type == "fake_channel_wise_dequantize_max_abs") {
    kNumFields += 1;
    quant_op_out_scale = pattern->NewNode(GetNodeName("quant_op_out_scale"))
                             ->assert_is_op_output(quant_type, "OutScale")
                             ->assert_is_op_nth_input(dequant_type, "Scales", 1)
                             ->AsIntermediate();
  } else {
    quant_op_out_scale = pattern->NewNode(GetNodeName("quant_op_out_scale"))
                             ->assert_is_op_output(quant_type, "OutScale")
                             ->assert_is_op_input(dequant_type, "Scale")
                             ->AsIntermediate();
  }
N
nhzlx 已提交
1863

1864 1865 1866 1867
  auto quant_op_out = pattern->NewNode(GetNodeName("quant_op_out"))
                          ->assert_is_op_output(quant_type, "Out")
                          ->assert_is_op_input(op_type)
                          ->AsIntermediate();
N
nhzlx 已提交
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882

  // there are 'times' quantized and dequant op
  std::vector<PDNode *> nodes;
  for (int i = 0; i < times; i++) {
    nodes.push_back(
        pattern->NewNode(GetNodeName("quantized_op_weight") + std::to_string(i))
            ->assert_is_op_input(op_type, weight_name)
            ->AsInput());
    nodes.push_back(
        pattern->NewNode(GetNodeName("quantized_op") + std::to_string(i))
            ->assert_is_op(op_type));

    nodes.push_back(
        pattern->NewNode(GetNodeName("quantized_op_out") + std::to_string(i))
            ->assert_is_op_output(op_type)
1883
            ->assert_is_op_input(dequant_type, "X")
N
nhzlx 已提交
1884 1885 1886 1887
            ->AsIntermediate());

    nodes.push_back(
        pattern->NewNode(GetNodeName("dequant_op") + std::to_string(i))
1888 1889
            ->assert_is_op(dequant_type));

N
nhzlx 已提交
1890 1891
    nodes.push_back(
        pattern->NewNode(GetNodeName("dequant_op_out") + std::to_string(i))
1892
            ->assert_is_op_output(dequant_type, "Out")
N
nhzlx 已提交
1893
            ->AsOutput());
1894 1895 1896 1897 1898 1899 1900 1901

    if (dequant_type == "fake_channel_wise_dequantize_max_abs") {
      nodes.push_back(pattern
                          ->NewNode(GetNodeName("dequant_channel_scale") +
                                    std::to_string(i))
                          ->assert_is_op_nth_input(dequant_type, "Scales", 0)
                          ->AsInput());
    }
N
nhzlx 已提交
1902 1903 1904 1905 1906 1907 1908 1909 1910
  }

  quant_op->LinksFrom({quant_op_input, quant_op_in_scale});
  quant_op_out->LinksFrom({quant_op});
  for (int i = 0; i < times; i++) {
    nodes[i * kNumFields + kQuantizedOpOffset]->LinksFrom(
        {quant_op_out, nodes[i * kNumFields + kQuantizedWeightOffset]});
    nodes[i * kNumFields + kQuantizedOpOutOffset]->LinksFrom(
        {nodes[i * kNumFields + kQuantizedOpOffset]});
1911 1912 1913 1914 1915 1916 1917 1918
    if (dequant_type == "fake_channel_wise_dequantize_max_abs") {
      nodes[i * kNumFields + kDequantOpOffset]->LinksFrom(
          {nodes[i * kNumFields + kQuantizedOpOutOffset], quant_op_out_scale,
           nodes[i * kNumFields + kDequantOpWeightScaleOffset]});
    } else {
      nodes[i * kNumFields + kDequantOpOffset]->LinksFrom(
          {nodes[i * kNumFields + kQuantizedOpOutOffset], quant_op_out_scale});
    }
N
nhzlx 已提交
1919 1920 1921 1922 1923
    nodes[i * kNumFields + kDequantOpOutOffset]->LinksFrom(
        {nodes[i * kNumFields + kDequantOpOffset]});
  }
}

1924 1925 1926
void patterns::ShuffleChannelPattern::operator()(PDNode *reshape1_in) {
  auto reshape1_op =
      pattern->NewNode(reshape1_op_repr())->assert_is_op("reshape2");
1927 1928 1929
  reshape1_op->assert_more([&](Node *x) {
    return boost::get<std::vector<int>>(x->Op()->GetAttr("shape")).size() == 5;
  });
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957

  auto reshape1_out = pattern->NewNode(reshape1_out_repr())
                          ->assert_is_op_output("reshape2", "Out")
                          ->assert_is_op_input("transpose2")
                          ->AsIntermediate();

  auto transpose_op =
      pattern->NewNode(transpose_op_repr())->assert_is_op("transpose2");

  auto transpose_out = pattern->NewNode(transpose_out_repr())
                           ->assert_is_op_output("transpose2", "Out")
                           ->assert_is_op_input("reshape2")
                           ->AsIntermediate();

  auto reshape2_op =
      pattern->NewNode(reshape2_op_repr())->assert_is_op("reshape2");
  auto reshape2_out = pattern->NewNode(reshape2_out_repr())
                          ->assert_is_op_output("reshape2", "Out")
                          ->AsOutput();

  reshape1_op->LinksFrom({reshape1_in});
  reshape1_out->LinksFrom({reshape1_op});
  transpose_op->LinksFrom({reshape1_out});
  transpose_out->LinksFrom({transpose_op});
  reshape2_op->LinksFrom({transpose_out});
  reshape2_out->LinksFrom({reshape2_op});
}

1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
void patterns::DeleteQuantDequantOpPattern::operator()() {
  auto any_op_out =
      pattern->NewNode(any_op_out_repr())
          ->assert_is_op_input(
              "fake_quantize_dequantize_moving_average_abs_max", "X")
          ->AsInput();

  auto quant_dequant_op_inscale =
      pattern->NewNode(quant_dequant_op_inscale_repr())
          ->assert_is_op_input(
              "fake_quantize_dequantize_moving_average_abs_max", "InScale")
          ->AsInput();
  auto quant_dequant_op =
      pattern->NewNode(quant_dequant_op_repr())
          ->assert_is_op("fake_quantize_dequantize_moving_average_abs_max");

  auto quant_dequant_out =
      pattern->NewNode(quant_dequant_op_out_repr())
          ->assert_is_op_output(
              "fake_quantize_dequantize_moving_average_abs_max", "Out")
          ->AsIntermediate();

  auto quant_dequant_op_outscale =
      pattern->NewNode(quant_dequant_op_outscale_repr())
          ->assert_is_op_output(
              "fake_quantize_dequantize_moving_average_abs_max", "OutScale")
          ->AsOutput();
  auto any_op2 = pattern->NewNode(any_op2_repr())->assert_is_op()->AsOutput();

  quant_dequant_op->LinksFrom({any_op_out, quant_dequant_op_inscale});
  quant_dequant_op_outscale->LinksFrom({quant_dequant_op});
  quant_dequant_out->LinksFrom({quant_dequant_op});
  any_op2->LinksFrom({quant_dequant_out});
}

1993 1994 1995
}  // namespace ir
}  // namespace framework
}  // namespace paddle